当前位置:首页 > 通信技术 > 通信技术
[导读] 不涉及任何数学变换,而直接在时间变量域内对系统进行分析,称为系统的时域分析。其方法有两种:时域经典法与时域卷积法。 时域经典法就是直接求解系统微分方程的方

不涉及任何数学变换,而直接在时间变量域内对系统进行分析,称为系统的时域分析。其方法有两种:时域经典法与时域卷积法。

 时域经典法就是直接求解系统微分方程的方法。这种方法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢采用变换域分析方法(例如拉普拉斯变换法),而较少采用时域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普遍应用,时域卷积法得到了迅速发展,且不断成熟和完善,已成为系统分析的重要方法之一。时域分析法是各种变换域分析法的基础。

 在本章中,首先建立系统的数学模型——微分方程,然后用经典法求系统的零输入响应,用时域卷积法求系统的零状态响应,再把零输入响应与零状态响应相加,即得系统的全响应。其思路与程序是:

 其次,将介绍:系统相当于一个微分方程;系统相当于一个传输算子H(p);系统相当于一个信号——冲激响应h(t)。对系统进行分析,就是研究激励信号f(t)与冲激响应信号h(t)之间的关系,这种关系就是卷积积分。

2-1    系统的数学模型——微分方程与传输算子

          研究系统,首先要建立系统的数学模型——微分方程。建立电路系统微分方程的依据是电路的两种约束:拓扑约束(KCL,KVL)与元件约束(元件的时域伏安关系)。为了使读者容易理解和接受,我们采取从特殊到一般的方法来研究。

 图2-1(a)所示为一含有三个独立动态元件的双网孔电路,其中 为激励, , 为响应。对两个网孔回路可列出KVL方程为

                 

   上两式为含有两个待求变量 , 的联立微分积分方程。

为了得到只含有一个变量的微分方程,

须引用微分算子 ,即

 

 , ,…,

 

在引入了微分算子 后,上述微分方程即可写

 

 

 即

       

     (2-1)

   根据式(2-1)可画出算子形式的电路模型,如图2-1(b)所示。将图2-1(a)与(b)对照,

可很容易地根据图2-1(a)画出图2-1(b),即将L改写成Lp,将C改写成  ,

其余一切均不变。当画出了算子电路模型后,即可很容易地根据图2-1(b)算子电路模型列写出式(2-1)。

  给式(2-1)等号两端同时左乘以p,即得联立的微分方程,即

 

将已知数据代入上式,得

                

  (2-2)

用行列式法从式(2-2)中可求得响应i1(t)为

            

注意,在上式的演算过程中,消去了分子与分母中的公因子p。这是因为所研究的电路是三阶的,

因而电路的微分方程也应是三阶的。但应注意,并不是在任何情况下分子与分母中的公因子都可消去。

有的情况可以消去,有的情况则不能消去,视具体情况而定。故有

            

            

           

上式即为待求变量为i1(t)的三阶常系数线性非齐次常微分方程。

方程等号左端为响应i1(t)及其各阶导数的线性组合,

等号右端为激励f(t)及其各阶导数的线性组合。

    利用同样的方法可求得i2(t)为

                 

                

                   

               

上式即为描述响应i2(t)与激励f(t)关系的微分方程。

    推广之,对于n阶系统,若设y(t)为响应变量, f(t)为激励,如图2-2所示,则系统微分方程的一般形式为

                              

(2-3)

                        

用微分算子 表示则为

            

            

 

或写成

                                             

又可写成

                    

式中

 

 

称为系统或微分方程式(2-3)的特征多项式;

              

              

(2-4)

H(p)称为响应y(t)对激励f(t)的传输算子或转移算子,它为p的两个实系数有理多项式之比,

其分母即为微分方程的特征多项式D(p)。H(p)描述了系统本身的特性,与系统的激励和响应无关。

    这里指出一点:字母p在本质上是一个微分算子,但从数学形式的角度,以后可以人为地把它看成是

一个变量(一般是复数)。这样,传输算子H(p)就是p的两个实系数有理多项式之比。

例2-1  图2-3(a)所示电路。求响应u1(t),u2(t)对激励 的传输算子及u1(t),u2(t)分别对i(t)的微分方程。

     解  其算子形式的电路如图2-3(b)所示。对节点①,②列算子形式的KCL方程为

               

代入数据得               

              

    对上式各项同时左乘以p,并整理得

                     

用行列式法联解得

                  

                  

故得u1(t)对i(t),u2(t)对i(t)的传输算子分别为

                                  

                    

进而得u1(t),u2(t)分别对i(t)的微分方程

               

               

               

               

可见,对不同的响应u1(t),u2(t),其特征多项式 都是相同的,

这就是系统特征多项式的不变性与相同性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭