当前位置:首页 > 通信技术 > 通信技术
[导读]超带宽UWB(Ultra-Wideband)技术具有抗干扰能力强、传输速率高、带宽极宽、功耗传输低等优势,近年来已成为国内外的研究热点,并在短距离传输、高速无线LAN和成像处理等领域得到了广泛应用[1]。不论在传统的无线接收结

超带宽UWB(Ultra-Wideband)技术具有抗干扰能力强、传输速率高、带宽极宽、功耗传输低等优势,近年来已成为国内外的研究热点,并在短距离传输、高速无线LAN和成像处理等领域得到了广泛应用[1]。不论在传统的无线接收结构还是在UWB接收系统中,低噪声放大器LNA(Low- Noise Amplifier)作为射频前端的关键器件,有着至关重要的作用。其可在尽可能低地引入额外噪声的情况下放大微弱信号,同时具有良好的噪声性能、合理的平坦增益、良好输入输出匹配程度和较高的线性度等特性。

在传统的UWB LNA设计中,一般采用分布式和并联电阻反馈式技术。分布式技术具有较好的宽带特性和输入匹配特性,但功耗和芯片面积较大,并且噪声系数NF(Noise Figure)较高。而反馈式技术的额外电阻会导致噪声性能的恶化,因此不太适合LNA设计。滤波器匹配结构是目前较流行的UWB LNA结构,其拥有良好的增益平坦度和较优的噪声性能等优点,而窄带PCSNIM结构的NF、输入输出阻抗匹配和功耗等指标性能较好。因此,本文设计思路是在窄带PCSNIM LNA的输入输出端引入高阶带通滤波器,这样既保证了噪声性能、阻抗匹配和功耗等指标不被恶化,更能拓展系统的宽带。实验结果表明,此方案取得了不错的效果。

1 超宽带低噪声放大器(UWB LNA)的提出

UWB LNA的电路如图1所示,其中I_DC、M3和R1构成偏置电路,I_DC提供稳定的偏置电流,其值为60 μA。晶体管M1与M3在直流工作时形成电流镜;电阻R1可减少偏置电路对输入的影响并补偿M3管的栅源极电容(Cgs)效应,其取值为3 000 Ω;NMOS型的 M1管源极接源简并反馈电感Ls,构成去耦电路,以降低系统Q值和系统功耗;附加电容Ce可优化噪声系数和Ls值,从而减少系统的芯片面积;分立元件 L1、L2、L3、C1和C0构成五阶T型LC滤波网络,以拓展输入匹配网络的宽带; M2提供良好的反向隔离度,并能有效抑制M1管的Miller效应;为折中考虑噪声性能和功耗等指标,需合理选择M1和M2管的栅宽,一般取M1和M2尺寸相同(为80 μm); M1和M2的级间匹配由Lm和Cm构成,能弥补电容Ce引起的增益下降,并可适当优化电路的噪声性能;M2漏端L4、Rd和C2形成并联低Q值负载结构,以提高输出网络匹配程度和减少输出回波损耗。此外,电阻Rd还可提高电路的稳定度; C3、C4、C5、L5和L6构成五阶T型LC滤波网络,具有扩展输出带宽和选频的功能。

2 理论分析

图 2为典型的窄带PCSNIM LNA电路结构。简并电感LS值在不是很大情况下,能较容易地实现噪声和输入阻抗的同时匹配,并能降低系统的功耗。然而LS不能太大,否则会导致电路噪声系数的恶化。为解决功耗和噪声性能相互矛盾的问题,可在晶体管M1的栅源极并联一附加电容Ce。LS和最小噪声系数表达式如下:

其中,c为栅-漏极噪声的相关系数;δ为与工艺相关的噪声参数,且δ=2γ;ωT为特征频率,取决于CMOS工艺而与晶体管尺寸无关;Ct=Ce+Cgs,Cgs≈(2/3)WLCOX。由式(2)可以看出,最小噪声系数表达式不包含Ce,说明额外电容Ce并没有恶化LNA的噪声性能,且与电感LS成反比,从而达到稳定噪声因子Fmin的目的。

在理想的输入阻抗匹配条件下,UWB LNA电压增益Av与Ct的平方根成反比,说明引入Ce后,系统的增益会随之降低。由于M1的输出阻抗和M2的输入阻抗都呈容性[2],为解决Ce所引起的电压增益下降的问题,可在晶体管M1和M2之间引入一并联电感Lm和电容Cm,级间匹配如图3所示,电感Lm和电容Cm与Cgs2(M2栅源极寄生电容)、Cgd1(M1栅漏极寄生电容)谐振,抵消Cgd1所引起的M1输出容抗与Cgs2引起的M2输入容抗,进而提高系统增益和优化噪声性能。

3 输入匹配网络的设计

为完成宽带的输入阻抗匹配,可在输入端引入L2、L3和C0以构成三阶T型LC滤波网络,并在此基础上通过加入无源器件L1和C1来扩展UWB的宽带,如图4所示。窄带PCSNIM LNA的输入匹配阻抗Zin由式(3)确定[3]:

4 仿真结果分析

设计了一个基于TSMC 0.18 ?滋m CMOS工艺元件库的超宽带LNA,采用Agilent公司的ADS2008软件进行仿真设计。实验结果表明,噪声系数、增益、线性度和稳定度等性能指标都取得了较理想的效果。电路采用1.8 V直流电源供电,电流消耗为5.89 mA,功耗约为10.6 mW。

S参数分析:S11仿真对比如图5所示,在UWB频段间,引入电容Ce后,LNA的S11仿真结果:频率为3 GHz时,S11=-14.342 dB;频率为5 GHz时,S11=-14.868 dB。S11越小,电路的输入回波损耗就越小,说明电容Ce的引入可大大减少系统的输入回波损耗,从而实现输入阻抗的匹配。图6是正向增益S21的对比图,其中实线、虚线分别为引入电容Ce前后的仿真结果,叉线为引入级间匹配后的结果。仿真结果表明,引入Ce会导致增益的恶化,而级间匹配可弥补Ce导致的增益下降,最终平均增益超过了13 dB。S22和S12仿真结果如图7所示,引入输出并联负载结构后,在整个UWB频段内,S22<-14 dB,说明并联结构能有效改善输出反射值,系统的回波损耗得到了改善,从而防止信号泄露和增强系统稳定性;而S12<-50 dB,说明电路的反向隔离度较好。

噪声性能和稳定性分析:噪声系数仿真如图8所示,噪声系数NF:0.875 dB

线性度仿真分析:4.2 GHz时双音输出频谱图如图10所示。图中的B1为输出三阶互调失真信号的功率,记为PIMD, B2为输出基波信号的功率,记为PFind。IIP3表达式为:IIP3=(ΔP/2)+Pin,Pin为输入功率,设为-40 dBm,?驻P=PFind-PIMD,将图中数据代入公式可得4.2 GHz 时的IIP3值为5.79 dBm。同理,当输出频谱为3.6 GHz时,IIP3值为5.61 dBm。经过多个中心频率测试,最终可得UWB LNA的IIP3的平均值约为5.35 dB,说明电路取得了较好的线性度。

本文设计了一款具有低噪声、高线性度等特性的UWB LNA。提出的LNA基于窄带PCSNIM结构,并在其

输入输出端引入了高阶带通滤波器。仿真结果表明,电路获得了约为13.5 dB的正向增益和0.875 dB~4.072 dB的噪声系数。此外,线性度和功耗等性能方面也取得了不错的效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

智能驾驶技术快速迭代,ADAS环视系统作为车辆周边环境感知的核心模块,对图像传感器的性能提出了严苛要求。其中,噪声抑制能力直接影响系统在低光照、强干扰等极端场景下的可靠性。本文从技术原理、工程实践及未来趋势三个维度,对比...

关键字: CMOS CCD

中国上海,2025年7月29日——全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出工作时的电路电流可控制在业界超低水平的超小尺寸CMOS运算放大器“TLR1901GXZ”。该产品非常适用于电池或充电电池驱...

关键字: CMOS 运算放大器 可穿戴设备

太赫兹(THz)波段位于微波与红外光之间,具有独特的频谱特性,在高速通信、高分辨率成像、安全检测等领域展现出巨大的应用潜力。然而,太赫兹射频前端作为太赫兹系统的关键组成部分,其集成面临诸多挑战。砷化铟高电子迁移率晶体管(...

关键字: 太赫兹 InP HEMT CMOS

【2025年6月19日,德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)已加入FiRa®(精准测距)联盟董事会。此举标志着英飞凌在推动超宽带(U...

关键字: 超宽带 数据通信 数字化

量子计算迈向实用化的进程,量子-经典混合芯片架构成为突破技术瓶颈的关键路径。超导量子比特虽具备高速门操作与可扩展性优势,但其运行需在毫开尔文级低温环境中维持量子态相干性;而CMOS控制电路则依赖室温环境下的成熟工艺与高集...

关键字: 量子计算 CMOS

在现代电子系统和通信领域,微弱信号的准确采集与处理是众多应用的核心需求。从深空探测中的微弱射电信号,到生物医学领域人体微弱生理电信号的监测,再到物联网中传感器输出的微弱信号,微弱信号的有效采集直接关系到系统的性能和可靠性...

关键字: 微弱信号 低噪声放大器 LNA

在现代工业控制系统中,信号调节器作为数据采集与处理的核心组件,其性能直接影响系统的精度与稳定性。尤其在传感器信号微弱、环境噪声复杂的场景下,高精度信号调节器的设计成为关键技术挑战。本文围绕低噪声放大器(LNA)与校准电路...

关键字: 工业信号 调节器 低噪声放大器

为增进大家对BiCMOS技术的认识,本文将对BiCMOS以及BiCMOS工艺流程予以介绍。

关键字: BiCMOS 指数 CMOS
关闭