当前位置:首页 > 测试测量 > 测试测量
[导读]离子注入技术介绍:把掺杂剂的原子引入固体中的一种材料改性方法。简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一个

离子注入技术介绍:把掺杂剂的原子引入固体中的一种材料改性方法。简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一个具有特殊性质的表面层(注入层)。

离子注入的基本特点:
①纯净掺杂,离子注入是在真空系统中进行的,同时使用高分辨率的质量分析器,保证掺杂离子具有极高的纯度。
②掺杂离子浓度不受平衡固溶度的限制。原则上各种元素均可成为掺杂元素,并可以达到常规方法所无法达到的掺杂浓度。对于那些常规方法不能掺杂的元素,离子注入技术也并不难实现
③注入离子的浓度和深度分布精确可控。注入的离子数决定于积累的束流,深度分布则由加速电压控制,这两个参量可以由外界系统精确测量、严格控制。
④注入离子时衬底温度可自由选择。根据需要既可以在高温下掺杂,也可以在室温或低温条件下掺杂。这在实际应用中是很有价值的。
⑤大面积均匀注入。离子注入系统中的束流扫描装置可以保证在很大的面积上具有很高的掺杂均匀性。
⑥离子注入掺杂深度小。一般在 1um以内。例如对于100keV离子的平均射程的典型值约为0.1um。

离子注入技术的发展
离子注入首先是作为一种半导体材料的掺杂技术发展起来的,它所取得的成功是其优越性的最好例证。低温掺杂、精确的剂量控制、掩蔽容易、均匀性好这些优点,使得经离子注入掺杂所制成的几十种半导体器件和集成电路具有速度快、功耗低、稳定性好、成品率高等特点。对于大规模、超大规模集成电路来说,离子注入更是一种理想的掺杂工艺。如前所述,离子注入层是极薄的,同时,离子束的直进性保证注入的离子几乎是垂直地向内掺杂,横向扩散极其微小,这样就有可能使电路的线条更加纤细,线条间距进一步缩短,从而大大提高集成度。此外,离子注入技术的高精度和高均匀性,可以大幅度提高集成电路的成品率。随着工艺上和理论上的日益完善,离子注入已经成为半导体器件和集成电路生产的关键工艺之一。在制造半导体器件和集成电路的生产线上,已经广泛地配备了离子注入机。   

70年代以后,离子注入在金属表面改性方面的应用迅速发展。在耐磨性的研究方面已取得显著成绩,并得到初步的应用,在耐腐蚀性(包括高温氧化和水腐蚀)的研究方面也已取得重要的进展。   

注入金属表面的掺杂原子本身和在注入过程中产生的点阵缺陷,都对位错的运动起“钉扎”作用,从而使金属表面得到强化,提高了表面硬度。其次,适当选择掺杂元素,可以使注入层本身起着一种固体润滑剂的作用,使摩擦系数显著降低。例如用锡离子注入En352轴承钢,可以使摩擦系数减小一半。尤其重要的是,尽管注入层极薄,但是有效的耐磨损深度却要比注入层深度大一个数量级以上。实验结果业已证明,掺杂原子在磨损过程中不断向基体内部推移,相当于注入层逐步内移,因此可以相当持久地保持注入层的耐磨性。

离子注入技术的性能

离子注入后形成的表面合金,其耐腐蚀性相当于相应合金的性能,更重要的是,离子注入还可以获得特殊的耐蚀性非晶态或亚稳态表面合金,而且离子注入和离子束分析技术相结合,作为一种重要的研究手段,有助于表面合金化及其机制的研究。
离子注入作为金属材料改性的技术,还有一个重要的优点,即注入杂质的深度分布接近于高斯分布,注入层和基体之间没有明显的界限,结合是极其紧密的。又因为注入层极薄,可以使被处理的样品或工件的基体的物理化学性能保持不变,外形尺寸不发生宏观的变化,适宜于作为一种最后的表面处理工艺。
离子注入由于化学上纯净、工艺上精确可控,因此作为一种独特的研究手段,还被广泛应用于改变光学材料的折射率、提高超导材料的临界温度,表面催化、改变磁性材料的磁化强度和提高磁泡的运动速度和模拟中子辐照损伤等等领域。

2.1 离子注入应用于金属材料改性
    离子注入应用于金属材料改性,是在经过热处理或表面镀膜工艺的金属材料上,注入一定剂量和能量的离子到金属材料表面,改变材料表层的化学成份、物理结构和相态,从而改变材料的力学性能、化学性能和物理性能。具体地说,离子注入能改变材料的声学、光学和超导性能,提高材料的工作硬度、耐磨损性、抗腐蚀性和抗氧化性,最终延长材料工作寿命。

2.2 离子注入机应用于掺杂工艺
    在半导体工艺技术中,离子注入具有高精度的剂量均匀性和重复性,可以获得理想的掺杂浓度和集成度,使电路的集成、速度、成品率和寿命大为提高,成本及功耗降低。这一点不同于化学气相淀积,化学气相淀积要想获得理想的参数,如膜厚和密度,需要调整设备设定参数,如温度和气流速率,是一个复杂过程。上个世纪70年代要处理简单一个的n型金属氧化物半导体可能只需6~8次注入,而现代嵌入记忆功能的CMOS集成电路可能需要注入达35次。
    技术应用需要剂量和能量跨越几个等级,多数注入情况为:每个盒子的边界接近,个别工艺因设计差异有所变化。随着能量降低,离子剂量通常也会下降。具备经济产出的最高离子注入剂量是1016/cm2,相当于20个原子层。

2.3 在SOI技术中的应用
    由于SOI技术(Silicon-on-Insulation)在亚微米ULSI低压低功耗电路和抗辐照电路等方面日益成熟的应用,人们对SOI制备技术进行了广泛探索。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭