当前位置:首页 > 智能硬件 > 半导体
[导读]【导读】长久以来,在对$led散热$要求不是很高的情况下,led多利用传统树脂基板进行封装。然而,随着市场应用领域不断扩大,需求层次不断提高,传统的树脂基板在高功率led世代到来后,已渐渐不敷使用。因此,探讨和展

【导读】长久以来,在对$led散热$要求不是很高的情况下,led多利用传统树脂基板进行封装。然而,随着市场应用领域不断扩大,需求层次不断提高,传统的树脂基板在高功率led世代到来后,已渐渐不敷使用。因此,探讨和展望高功率led的封装材料,便成为业界关注的热点话题。

 长久以来,在对led散热要求不是很高的情况下,led多利用传统树脂基板进行封装。然而,随着市场应用领域不断扩大,需求层次不断提高,传统的树脂基板在高功率led世代到来后,已渐渐不敷使用。因此,探讨和展望高功率led的封装材料,便成为业界关注的热点话题。

 led散热的原理
 研究表明,高功率led只能将20%的电能转化成光能,其余都会以热能的形式散失。如果高达80%的热能无法及时散失,那么led的寿命将会因此大打折扣。led的热能究竟是如何散失的呢?

 led散热能力通常受到封装模式以及封装材质的导热性影响,散热途径也不外传导、对流、辐射这三种。由于led封装材料中积聚的热能大部分是以传导方式散失,因此封装材质的选取就变得尤为重要了。

 传统材质已无法满足高功率led散热需求

 随着市场上越来越多的高功率led应用出现,在考虑如何散失热能的同时,还要兼顾led发光的稳定性与持续性。如果led的热能无法尽快散失,那么其亮度和寿命都将下降得很快。所以,对于高功率led而言,传统的环氧树脂受其特性所限,已不符合其对散热的需求。

 在led低功率或一般功率的使用条件下,环氧树脂热传导率较低和耐热性较差的缺点还没被完全凸现。但如果再用环氧树脂作为封装高功率led的材质,则很可能出现led芯片本身寿命还未达到之前,环氧树脂就已经无以为继的情况。
 此外,不仅散热现象会使环氧树脂产生变化,甚至连短波长也会对环氧树脂造成困扰。这是因为在白光led发光光谱中也包含短波长光线,而环氧树脂很容易受到白光led中的短波长光线破坏。即使是低功率的白光led,已能使环氧树脂破坏情况加剧,更何况高功率的白光led所发出的短波长光线更多,恶化现象自然更加快速和严重。因此,找到全新材质来替代环氧树脂封装高功率led已经迫在眉睫。

 led散热基板类型

 目前,常见的led散热基板类型包括:硬式印刷电路板、高热导系数铝基板、陶瓷基板、软式印刷电路板、金属复合材料,等等。

 硬式印刷电路板(printedcircuitboard;pcb)多用于各项电子基板,LED控制器但却无法承受高功率led所散失出的热能,因此应用局限于低功率和一般功率的led,不具备向高功率led延伸应用的可能。

 高热导系数铝基板(metalcorepcb;mcpcb)是将pcb下方基材改为铝合金,一般来说,虽然纯铝的散热系数较铝合金高,但由于纯铝的硬度不高造成使用上的出现困难,因此只会以铝合金来当制作基板的材质。

 陶瓷基板目前有三种,即al2o3(氧化铝)、ltcc(低温共烧陶瓷)、aln(氮化铝)。单就技术水准而言,无疑以氮化铝最高,低温共烧陶瓷次之。由低温共烧陶瓷制作的led基板,虽然有散热性更好,且耐高温、耐潮湿等优点,但由于其价格高出传统基板数倍,所以直至今日仍不是制作散热型基板的理想材质。当然,如果不考虑价格因素,那么陶瓷基板还是当之无愧的首选。

 软式印刷电路板(fpc)具有重量轻、厚度薄、可挠、运用空间灵活等优点,热导系数也优于传统pcb基板和mcpcb基板,且应用面积大于陶瓷基板。但是,该技术目前仍处实验阶段,良率偏低,所以尚无法大规模投产。

 金属基板成为高功率led首选

 通过上述比较,由于金属基板相对而言性价比最高,因此它也成为led高功率条件下的首选方案。而且,随着led芯片大型化、大电流化、高功率化发展,金属封装基板取代传统树脂封装基板的脚步也会越来越快。

 就目前高散热金属基板的材质而言,可分成硬质与可挠两种。LED控制器结构上,硬质基板属于传统金属材质,采用铝、铜等金属,绝缘层部分则大多填充高热导性的无机物。这种金属基板拥有高热导性、高耐热性,以及电磁屏蔽等优点,其厚度通常大于1毫米,因此广泛应用于led灯具模块和照明模块当中,大大有助于高功率 led在路灯方面的推广和普及。

 可挠基板大有可为

 一般而言,金属封装基板热导效率大约为2w/m•k.但由于高效率led的散热要求更高,所以为了满足4~6w/m•k的热导效率,目前已经出现热导效率超过8w/m•k的金属封装基板。由于硬质金属封装基板主要是为满足高功率led封装,因此各封装基板厂商正在积极开发可以提高热导效率的技术。

 不过,金属封装基板同样具有金属热膨胀系数很大的缺点,LED控制器当与低热膨胀系数的陶瓷芯片进行焊接时,容易受到热循环冲击,所以当使用氮化铝进行封装时,金属封装基板就可能发生不协调现象,因此必需克服led中各种不同热膨胀系数材料之间的热应力差异,提高封装基板的可靠性。

 可挠基板的出现,恰恰解决了上述难题。高热传导可挠基板,是在绝缘层上黏贴金属箔,虽然基本结构与传统可挠基板完全相同,但在绝缘层方面,LED控制器却是采用软质环氧树脂充填高热传导性无机物,因此具有8w/m?k的高热传导性,同时还兼具柔软可挠与高可靠性的优点。此外,可挠基板还可依照客户需求,将单面单层板设计成单面双层、双面双层板。根据实验结果显示,使用高热传导可挠基板可使led的温度大约降低100摄氏度,这可大为提高led的使用寿命。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭