当前位置:首页 > 电源 > 功率器件
[导读]你知道电源中磁性元件设计中的8个常见错误概念吗?为了使电源设计者在设计过程中,避免犯同样的错误,为此,我们针对在学习和研发中遇到的一些概念性的问题进行了总结,希望能给大家提供一个借鉴。

你知道电源中磁性元件设计中的8个常见错误概念吗?为了使电源设计者在设计过程中,避免犯同样的错误,为此,我们针对在学习和研发中遇到的一些概念性的问题进行了总结,希望能给大家提供一个借鉴。

1、填满磁芯窗口——优化的设计

很多电源设计人员认为在高频磁性元件设计中,填满磁芯窗口可以获得最优设计,其实不然。在多例高频变压器和电感的设计中,我们可以发现多增加一层或几层绕组,或采用更大线径的漆包线,不但不能获得优化的效果,反而会因为绕线中的邻近效应而增大绕组总损耗。因此在高频磁性元件设计中,即使绕线没把铁芯窗口绕满,只绕满了窗口面积的25%,也没有关系。不必非得想法设法填满整个窗口面积。

这种错误概念主要是受工频磁性元件设计的影响。在工频变压器设计中,强调铁芯和绕组的整体性,因而不希望铁芯与绕组中间有间隙,一般都设计成绕组填满整个窗口,从而保证其机械稳定性。但高频磁性元件设计并没有这个要求。

2、“铁损=铜损”——优化的变压器设计

很多电源设计者,甚至在很多磁性元件设计参考书中都把“铁损=铜损”列为高频变压器优化设计的标准之一,其实不然。在高频变压器的设计中,铁损和铜损可以相差较大,有时两者差别甚至可以达到一个数量级之大,但这并不代表该高频变压器设计不好。

这种错误概念也是受工频变压器设计的影响。工频变压器往往因为绕组匝数较多,所占面积较大,因而从热稳定、热均匀角度出发,得出“铁损=铜损”这一经验设计规则。但对于高频变压器,采用非常细的漆包线作为绕组,这一经验法则并不成立。在开关电源高频变压器设计中,确定优化设计有很多因素,而“铁损=铜损”其实是最少受关注的一个方面。

3、漏感=1%的磁化电感

很多电源设计者在设计好磁性元件后,把相关的技术要求提交给变压器制作厂家时,往往要对漏感大小要求进行说明。在很多技术单上,标注着“漏感=1%的磁化电感”或“漏感<2%的磁化电感”等类似的技术要求。其实这种写法或设计标准很不专业。电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制。在制作变压器的过程中,应在不使变压器的其它参数(如匝间电容等)变差的情况下尽可能地减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求。因为漏感与磁化电感的关系随变压器有无气隙变化很大。无气隙时,漏感可能小于磁化电感的0.1%,而在有气隙时,即使变压器绕组耦合得很紧密,漏感与磁化电感的比例关系却可能达到10%

因此,不要把漏感与磁化电感的比例关系作为变压器设计指标提供给磁性元件生产商。否则,这将表明你不理解漏感知识或并不真正关心实际的漏感值。正确的做法是规定清楚可以接受的漏感绝对数值,当然可以加上或减去一定的比例,这个比例的典型值为20%。

4、漏感与磁芯磁导率有关系

有些电源设计者认为,给绕组加上磁芯,会使绕组耦合更紧密,可降低绕组间的漏感;也有些电源设计者认为,绕组加上磁芯后,磁芯会与绕组间的场相互耦合,可增加漏感量。

而事实是,在开关电源设计中,两个同轴绕组变压器的漏感与有无磁芯存在并无关系。这一结果可能令人无法理解,这是因为,一种相对磁导率为几千的材料靠近线圈后,对漏感的影响很小。通过几百组变压器的实测结果表明,有无磁芯存在,漏感变化值基本上不会超过10%,很多变化只有2%左右。

5、变压器绕组电流密度的优化值为2A/mm²~3.1A/mm²

很多电源设计者在设计高频磁性元件时,往往把绕组中的电流密度大小视为优化设计的标准。其实优化设计与绕组电流密度大小并没有关系。真正有关系的是绕组中有多少损耗,以及散热措施是否足够保证温升在允许的范围之内。

我们可以设想一下开关电源中散热措施的两种极限情况。当散热分别采用液浸和真空时,绕线中相应的电流密度会相差较大。

在开关电源的实际研制中,我们并不关心电流密度是多大,而关心的只是线包有多热?温升是否可以接受?

这种错误概念,是设计人员为了避免繁琐的反复试算,而人为所加的限制,来简化变量数,从而简化计算过程,但这一简化并未说明应用条件。

6、原边绕组损耗=副边绕组损耗”——优化的变压器设计

很多电源设计者认为优化的变压器设计对应着变压器的原边绕组损耗与副边绕组损耗相等。甚至在很多磁性元件的设计书中也把此作为一个优化设计的标准。其实这并非什么优化设计的标准。在某些情况下变压器的铁损和铜损可能相近。但如果原边绕组损耗与副边绕组损耗相差较大也没有多大关系。必须再次强调的是,对于高频磁性元件设计我们所关心的是在所使用的散热方式下,绕组有多热?原边绕组损耗=副边绕组损耗只是工频变压器设计的一种经验规则。

7、绕组直径小于穿透深度——高频损耗就会很小

绕组直径小于穿透深度并不能代表就没有很大的高频损耗。如果变压器绕组中有很多层,即使绕线采用线径比穿透深度细得多的漆包线,也可能会因为有很强的邻近效应而产生很大的高频损耗。因此在考虑绕组损耗时,不能仅仅从漆包线的粗细来判断损耗大小,要综合考虑整个绕组结构的安排,包括绕组绕制方式、绕组层数、绕线粗细等。

8、正激式电路中变压器的开路谐振频率必须比开关频率高得多

很多电源设计人员在设计和检测变压器时认为变压器的开路谐振频率必须比变换器的开关频率高得多。其实不然,变压器的开路谐振频率与开关频率的大小并无关系。我们可以设想一下极限情况:对于理想磁芯,其电感量无穷大,但也会有一个相对很小的匝间电容,其谐振频率近似为零,比开关频率小得多。

真正与电路有关系的是变压器的短路谐振频率。一般情况下,变压器的短路谐振频率都应当在开关频率的两个数量级以上。以上就是电源中磁性元件设计中的8个常见错误概念,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭