当前位置:首页 > 电源 > 功率器件
[导读]你知道低频变压器与高频变压器吗?他们有什么联系?本文将着重对低频变压器与高频变压器测试方法进行详尽的阐述,希望对你有所帮助。

你知道低频变压器与高频变压器吗?他们有什么联系?本文将着重对低频变压器与高频变压器测试方法进行详尽的阐述,希望对你有所帮助。

低频变压器

低频变压器用来传播信号电压和信号功率,还可实现电路之间的阻抗匹配,对直流电具有隔离作用。高频变压器与低频变压器原理上没区别。但由于高频和低频的频率不同,变压器所用的铁芯不同。低频变压器一般用高导磁率的硅钢片,高频变压器则用高频铁氧体磁芯。

工作原理

舌口32 mm、厚34 mm、宽96 mm,最大功率使用要多粗的线,舌口是指,EI型变压器铁芯截面积是指E片中间那一横(插入Satons变压器骨架中间方口里的)的宽度即铁芯舌宽与插入变压器骨架方口里所有E片的总厚度即叠厚的乘积最简单的就是指变压器骨架中间方口的面积,变压器铁芯截面积是指线圈所套着的部分:舌宽×叠厚=截面积,单位:cm2。 [2]

第一种计算方法

(1)变压器矽钢片截面:3.2 cm*3.4cm*0.9=9.792cm2

(2)根据矽钢片截面计算变压器功率:P=S/K^2=(9.79/1.25)^2=61.34瓦(取60瓦)

(3)根据截面计算线圈每伏几匝:W=4.5*105/BmS=4.5*105/(10000*9.79)=4.6匝/伏

(4)初级线圈匝数:220*4.6=1012匝

(5)初级线圈电流:60W/220V=0.273A

(6)初级线圈线径:d=0.715 =0.37(mm)

(7)次级线圈匝数:2*(51*4.6*1.03)=2*242(匝)(1.03是降压系素,双级51V=2*242匝)

(8)次级线圈电流:60W/(2*51V)=0.59A

(9)次级线径:d=0.715 =0.55(mm)

第二种计算方法

E形铁芯以中间舌为计算舌宽的。计算公式:输出功率:P2=UI

考虑到变压器的损耗,初级功率:P1=P2/η(其中η=0.7~0.9,一般功率大的取大值)

每伏匝数计算公式:N(每伏匝数)=4.5×105/B×S(B=硅钢片导磁率,一般在8000~12000高斯,好的硅钢片选大值,反之取小值。S=铁芯舌的面积,单位是cm2)如硅钢片质量一般可选取10000高斯,那么可简化为:

N=45/S

计算次级绕组圈数时,考虑变压器漏感和导线铜损,须增加5% 绕组余量。初级不用加余量。

由电流求线径:I=P/U (I=A,P=W,U=V)

以线径每平方毫米≈2.5~2.6A选取。

第三种计算方法

首先要说明的是变压器的截面积是线圈所套住位置的截面积。如果你的铁心面积(线圈所套住位置)为32*34=1088 mm2=10.88 cm2

小型变压器的简易计算:

1,求每伏匝数

每伏匝数=55/铁心截面

例如,你的铁心截面=3.5╳1.6=5.6平方厘米

故,每伏匝数=55/5.6=9.8匝

2,求线圈匝数

初级线圈 n1=220╳9.8=2156匝

次级线圈 n2=8╳9.8╳1.05=82.32,可取为82匝

次级线圈匝数计算中的1.05是考虑有负荷时的压降

3,求导线直径

你未说明你要求输出多少伏的电流是多少安?这里我假定为8V,电流为2安。

变压器的输出容量=8╳2=16伏安

变压器的输入容量=变压器的输出容量/0.8=20伏安

初级线圈电流I1=20/220=0.09安

导线直径 d=0.8√I

初级线圈导线直径 d1=0.8√I1=0.8√0.09=0.24毫米

次级线圈导线直径 d2=0.8√I2=0.8√2=1.13毫米

要注意层间电压绝缘,引出端绝缘问题。

高频变压器用在低频电路会有什么影响

高频变压器用在低频电路中电流增大,可能烧坏变压器。由于电感量与交流电的频率成正比。

低频变压器用在高频电路中电流减小,由于电感量与交流电的频率成正比,不会损坏变压器。高频电路不能正常工作。

高频变压器特指开关电源变压器,而不是工频变压器(50~60Hz工作频率)。开关电源变压器通常工作频率在20K~200K HZ范围,其电感量也极小,100微亨到1毫亨之间。

而工频变压器感量至少亨利(1000uH微亨=1mH毫亨;1000mH毫亨=1H亨利;)级以上。

根据阻抗原理,在同样感量、同样电压的情况下,工作频率越高其感抗越大、电流越小;频率越低感抗越小电流变得非常大而近似短路。

其次,开关电源变压器的磁芯也不一样,是铁氧体;而工频变压器的则是铁硅片,很多张铁硅片叠合而成,为的是提高工作效率,减少磁损涡流。

高频变压器测试方法

一般而言,高频变压器所要求测试的项目有:

1.电感

2.漏感

3.耐压

4.绝缘电阻

2.电感以及电感的测试方法

概念:变压器初级电感指次级开路时初级绕组的有效电感

测试条件:变压器的测试条件与其工作条件相一致。由于变压器铁心磁化曲线的非线性,当频率、交流电压、直流磁化电流变化时、铁心的有效磁导率也随着变化,从而引起电感的变化。

测试电感必须规定的测试条件:

1.测试频率;

2.变压器或电感器两端交流电压;

3.直流磁化电流。

3.漏感及漏感的测试方法

概念:漏感指的是线圈间相互不交链的漏磁通所产生的电感,它与线圈尺寸、绕组排列及匝数等因素有关系。漏感是一个线性电感,与测试电压无关。

漏感的分类:

1.初级漏感。指次级所有绕组短路时,在初级测得的电感。

2.次级漏感。指变压器初级绕组短路时在次级测的电感。

3.初级对次级任一绕组的漏感。对于有几个绕组的变压器(如多阻抗输出变压器),将初级一半短路时,在初级测的电感。

4.安全性试验

绝缘电阻。变压器各绕组及绕组与铁芯、静电屏蔽层之间的绝缘电阻在常态下均应大于1000MΩ ,在高温试验和恒定温热试验后应不低于10MΩ(IEC-65规定为不低于4 MΩ),测试绝缘电阻的直流电压为500V。

5.耐压测试

变压器初级与次级绕组、铁芯、静电屏蔽层之间应能承受50Hz,3500V(有效值)电压作用(IEC-65规定为3000V有效值)。次级绕组与铁芯、静电屏蔽层之间能承受50Hz,1000V(有效值)电压的作用而无击穿和飞弧(arcing)。限定电流为1mA(该值视变压器功率而言,最大不超过10mA。

6.输出端配线技术

高频变压器(如FLYBACK)将能量供给负载系统的过程中,当引线长且配线不合理时,线间所产生的寄生电容就会增加到不可忽视的程度,共模杂声就会通过这个寄生电容转播和导入到负载系统,使负载系统不能正常工作。

试验证明,采用交纽线比并行线传输效果要好,即将输出端的两根线直接交纽在一起,再经过滤波电容传输给负载,这就能得到很好的滤波效果。这种方法是最经济、效果又好、是实际应用中用得最多的一种。

7.屏蔽及屏蔽技术

目的:消除绕组间通过分布电容产生的电耦合,防止外部高频信号对变压器工作信号和负载的干扰。

措施:静电屏蔽、磁心接地、变压器加金属罩

方法:对于静电屏蔽,用铜薄带或金属绝缘膜隔离围绕在初级和次级之间,构成电气屏蔽。屏蔽厚度必须远小于穿透深度,一般为穿透深度的叁分之一。屏蔽应当以最小的引线电感直接焊接到变压器初级线圈的“静止”(输入电源+或-)电压端或大地,并屏蔽本身绝缘不能构成短路匝,才能起屏蔽作用。

8.漏感以及漏感的影响

一般而言,变压器的初级或多或少存在漏感,而一部分高频变压器用在开关电源(switching)上,开关电源使用一片IC,一般称为电源开关管。当电源开关管由导通到截止时会产生反电动势,反电动势又会对变压器初级线圈的分布电容进行充放电,从而产生阻尼振荡,即产生振铃。漏感产生的电动势的幅度也很高,其能量也很大,因此漏极钳位电路的损耗大,电源的效率低。如果不采取保护措施,反电动势力产生的阻尼振荡还会产生很强的电磁辐射,不但对机器本身造成严重干扰,对机器周围环境也会产生严重的电磁干扰。

对于一个符合绝缘及安全性国际标准的高频变压器,其漏感量应为次级开路时初级电感的1%~3%。

9.减少漏感的措施

为了减少变压器漏感对周围电路产生电磁感应的影响,一方面要求变压器的漏感要做得小,另一方面一定要在变压器的外围包一层薄铜箔,以构成一个低阻抗短路线圈,把漏感产生的感应能量通过涡流损耗掉。

如何把变压器的漏感做到最小呢?

1.减少绕组的匝数,选用高饱和磁感应强度,低损耗的磁性材料。

2.减少绕组的厚度,增加绕组的高度;

3.尽可能减少绕组间的绝缘厚度;

4.初次级采用分层式交叉绕制;

5.对于环行磁心变压器,均应沿环行磁心周围均匀绕制。

10.分布电容的影响以及减少措施

分布电容的影响:分布电容是引起开关初级到次级之间共模噪声的通道,它不仅能使开关电源效率降低,还与绕组的分布电感构成LC振荡器,产生振铃噪声,其中初级绕组分布电容的影响尤为显着。

减少分布电容的方法:

1.尽量减少每匝导线的长度;

2.在初级绕组间加绝缘层。

11.高频变压器的损耗

一个高效率的高频变压器应该具备以下条件:直流损耗和交流损耗低,绕组本身的分布电容以及各绕组间的耦合电容要小。

变压器的损耗:

1.直流损耗。是由线圈的铜损耗造成的。为提高效率,应该尽量选较粗的导线,并使其电流密度在4~10A/MM2范围内。

2.交流损耗。是由于高频电流的趋肤效应以及磁心损耗引起的。高频电流通过导线时总是趋向于从导线表面流过的现象称为趋肤效应。

变压器的损耗就是两者之和。

12.磁芯损耗的分类

软磁铁氧体磁心总损耗通常分为叁种类型:磁滞损耗、涡流损耗Pc 和剩余损耗Pr 。

磁滞损耗正比于直流磁滞回线的面积,与频率成线性关系。

涡流损耗Pc=Cef2B2/ρ ,其中Ce是尺寸常数,ρ是在锚点测量频率f时的电阻率。随着频率提高,涡流损耗在总损耗中的比重逐步增大,当工作频率达到200~500kHZ时涡流损耗已经占支配地位。

13.涡流损耗的介绍

在磁芯线圈中加上交流电压时,线圈中流过激磁电流,激磁安匝产生的全部磁通Φ通过磁芯,假如磁芯是导体,磁芯本身截面周围将链合全部磁通而构成单匝的次级线圈。

当交流激磁电压为U1时,根据电磁感应定律可知,U1= N1dΦ /d t,每一匝的感应电势,既磁芯截面最大周边等效一匝感应电势为U1/N1= dΦ /d t.。

因为磁芯材料的电阻率不是无穷大,顺着磁芯周边有一定的电阻值,感应电压产生电流ie,即涡流,流过这个电阻引起损耗,即涡流损耗。

14.铁芯气隙(Gap)的作用和方法

气隙(Gap)的作用:

1.避免磁芯饱和,降低剩余磁感应强度就提高磁芯工作的直流磁场强度。

2.使磁化曲线倾斜,以提高直流工作磁场。

气隙(Gap)最好开在中柱。因为杂散磁通、边缘磁通和端面磁通全部经过线圈中心的截面,这里的磁通密度最大,可能先发生饱和。

15.两个重要的概念

趋肤效应。导线中有交流电通过时,因导线内部和边缘部分所交链的磁通量不同,导致导线截面上的电流产生不均匀分布,相当于导线有效面积减少,这种现象称为趋肤效应。随着工作频率的提高,趋肤效应影响越大。穿透深度。穿透深度是由于趋肤效应,交流电沿导线表面开始能达到的径向深度导线流过高频交变电流时,有效截面的减少可用穿透深度来表示。

导线的选择塬则。在选用变压器初、次级的线经时,应遵循导线直径小于两倍穿透深度的塬则,当导线要求的直径大于两倍穿透深度的决定的线径时,可采用小直径的导线(直径应该小于两倍穿透深度)多股并绕或者采用扁铜线设计。以上就是低频变压器与高频变压器的联系,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

高频变压器,又称高频率变换器,是电力电子技术领域中一种关键的电磁元件,主要用于高压、大功率电能转换场合,尤其是在开关电源、逆变器、变频器等现代电力电子设备中占据核心地位。本文将深入探讨高频变压器的工作原理及其应用背景。

关键字: 高频变压器 电磁元件

开关电源在现代电子设备中扮演着至关重要的角色。它是一种将电能转换成直流电的设备,通过控制开关管的工作状态来实现电压的调整。开关电源的出现极大地简化了电子设备的设计,提高了设备的效率和稳定性。

关键字: 开关电源 高频变压器

本文中,小编将对高频变压器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 变压器 高频变压器

在这篇文章中,小编将为大家带来低频变压器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 变压器 低频变压器

高频变压器是一种常见的电力转换器,在许多电子设备和系统中得到广泛应用。由于高频变压器的工作频率较高,散热问题成为了限制其功率密度和效率的关键因素之一。本文将介绍高频变压器的散热及问题防护措施有哪些。

关键字: 高频变压器 功率密度 散热

高频变压器是一种广泛应用于各种电子设备中的电力转换器件。与低频变压器相比,高频变压器工作频率更高,通常在kHz至MHz之间。在设计和制造高频变压器时,绕线是一个非常关键的步骤。本文将介绍高频变压器的绕线方法以及需要注意的...

关键字: 高频变压器 绕线 工作频率

低频变压器是一种广泛应用于各种电气设备中的电力转换器件。与高频变压器相比,低频变压器工作频率更低,通常在50Hz至400Hz之间。在设计和选择低频变压器时,需要考虑许多因素。本文将介绍如何计算低频变压器的相关数值以及进行...

关键字: 低频变压器 频率 功率

高频变压器是一种用于将电能从一个电路传输到另一个电路的设备。它们在电子行业中应用广泛,因为它们可以在较小的物理空间内提供高功率输出。本文将介绍一些高频变压器的重要特征以及设计要点。

关键字: 高频变压器 高功率 高工作频率

变压器是电子行业中非常普遍的一种设备。它们被广泛应用于各种不同的领域,如家庭电器、工业自动化和通信系统等。虽然有许多不同类型的变压器可供选择,但本文将关注两种最常见的类型:高频变压器和低频/脉冲变压器。

关键字: 高频变压器 脉冲变压器 磁场

高频变压器是一种应用于高频电子设备中的电力转换器,它们主要由磁芯、主绕组和辅助绕组等部分组成。高频变压器的性能与其技术参数密切相关,高频变压器是一种常见的电子元器件,广泛应用于各类开关电源电子设备中。它可以将电压从一个级...

关键字: 高频变压器 绕组 开关电源
关闭
关闭