当前位置:首页 > 公众号精选 > TsinghuaJoking
[导读]近期在信号与系统课程中讲完了“信号的采样与恢复”的内容。通常情况下对于信号的采样都是沿着时间轴对信号的幅值进行采样,获得信号的离散时间点上的数据。 如果将信号 的波形绘制在直接坐标系中,那么该曲线就是分布在二维空间上的曲线。曲线上的点可以沿着

近期在信号与系统课程中讲完了“信号的采样与恢复”的内容。通常情况下对于信号的采样都是沿着时间轴对信号的幅值进行采样,获得信号的离散时间点上的数据。

如果将信号 的波形绘制在直接坐标系中,那么该曲线就是分布在二维空间上的曲线。曲线上的点可以沿着时间 轴进行排列,当然也可以按照幅值 的大小进行排列。也就是按照取值间隔,将信号通过该间隔的时间进行保存,这就是对信号的时间采样。

▲ 声音的时间波形

沿着时间轴对信号的幅值进行采样,Nyquist-Shannon定理告诉我们如何进行采样和如何进行信号恢复。但是,如何对信号时间进行采样,如何恢复是一个经典的未解决问题。

Logan定理[Logan,Jr.,1977]对一种特殊信号给出了采样与恢复的描述:如果一个信号的频谱具有倍频的性质,即信号频谱分布在一个频率范围内,最高频率是最低频率的两倍。那么这个信号可以通过它的过零点的时间值进行恢复。恢复的信号与原始信号仅仅相差一个比例因子。

信号采样与恢复

1. 幅度采样

下面是一段普通语音信号的复制采样波形。通过简单的DA转换和低通滤波便可以恢复出原始的声音波形。

▲ 幅度采集声音波形

这段语音信号的内容为:

2. 时间采样

如果仅仅保留该信号的过零时间点的信息,它的幅值全部去掉,所形成的波形大体上如下图所示。这很像将原来的语音信号通过一个过零点比较器,输出的信号反映了信号的极性。

▲ 声音信号过零点采样


当然,这个信号中包含有原来信号的部分信息。但它并不是原来语音信号的完美的回复。

尽管如此,播放这个信号,还是可以听到原来语音的信息。虽然有很大的失真和噪声。这说明原来的信号信息还是部分保留在这些过零点中。

经过比较器之后的语音信号为:

如果语音信号满足Logan定理的要求,那么理论上是可以恢复出原来的信号的。但如何来恢复?

如果信号本身是一个周期信号,也就是信号的频谱是离散的频谱。相对回复信号的算法比较简单。Sam Roweis等人在论文“Signal Reconstruction from Zero-Crossings"中给出了通过求解数据矩阵零空间向量的方法,来通过信号的过零时间点来重构信号的方法。

重建算法

1. 基本原理

已知到信号 具有倍频窄带频谱,它的频率范围分布在 范围内。

▲ 倍频信号频谱示意图

已知信号的周期 ,以及 个信号过零点:

重构信号的计算步骤如下:

(1)计算相关参数: 以及

(2)构造矩阵:

(3)寻找数据矩阵零空间向量:构造数据矩阵 ,矩阵大小是 。对该矩阵进行奇异值分解,得到 。其中 空间上的正交矩阵, 空间上的正交矩阵。 是奇异值向量,长度为

零空间向量是奇异值向量 中最小(理论上应该为0,但由于计算误差的存在,它可能是一个很小的数)对应的 中的向量,由于SVD算法往往把结果 按照绝对值从大到小排列,所以 的最后一个向量就对应着数据矩阵的零空间向量。

(4)构造信号函数:将数据空间矩阵中零空间向量前 个数值当做 ,后 个数值当做 ,重建信号公式为:


这种回复信号的过程,实际上就是根据信号的过零点来求解上面的函数中的参数。具体的理论分析在这里就不再展开了。

2. 测试函数

(1)实验信号的数学表达式:

选择一个频率分布在10Hz到20Hz之间的一个信号进行实验,随机指定对应的cos,sin信号的系数,如下:

▲ 信号的数学表达式

这是一个周期为1的倍频信号。

(2)信号的产生Python程序:

使用下面python程序,可以产生该信号的数据。也可以通过该函数完搜索信号的过零点。

def sfunc1(x): pi2 = 2 * pi retdata = cos(pi2*11*x) + sin(pi2*11*x)/2 + \ cos(pi2*12*x)/33 + sin(pi2*12*x)/4 + \ cos(pi2*13*x) + sin(pi2*13*x)/8 + \ cos(pi2*14*x) + sin(pi2*14*x)/7 + \ cos(pi2*15*x)/22 + sin(pi2*15*x)/3 +\ cos(pi2*16*x) + sin(pi2*16*x)/12 +\ cos(pi2*17*x) + sin(pi2*17*x)/40 +\ cos(pi2*18*x) + sin(pi2*18*x)/2 +\ cos(pi2*19*x)/3 + sin(pi2*19*x)/2
return retdata

(3)实验信号的波形:

下面绘制出0~2秒两个周期内的波形。

▲ 测试函数sfunc1信号波形

绘制该信号的过零点饱和信号,它仅仅保留了该信号的过零点的时间和相位信息。计算公式为:


▲ 该信号的幅值饱和信号

(4)信号的过零点:

通过数值计算,来获得信号的过零点。下面重新绘制出信号一个周期内的波形,没有添加任何噪声。

▲ 一个周期(0~1)之间的信号波形

通过对区间(0,1)采集10^6^个数值,然后通过寻找过零点,获得二十八个信号的过零点的值。

搜寻函数值过零点的python程序如下crosszero(t,val)。其中 是函数的自变量, 是函数值的采样。函数返回是对应函数过零点时的 的数值。

def crosszero(t, val): valsign = sign(val) valsignchange = [int(x!=y) for x,y in zip(valsign[0:-1],valsign[1:])] tvalue = [(x,y) for x,y in zip(t[0:-1], valsignchange)] zerot = filter(lambda t: t[1]!= 0, tvalue)
return [zt[0] for zt in zerot]

通过scipy.optimize.root来寻找信号的根,用于确定信号的过零点。利用上面搜索的结果作为初始值。

sol = scipy.optimize.root(tssub.sfunc1, czt, method='lm')
  • tssub.sfunc1:定义的信号函数;
  • czt:是前面通过数值过零点搜索获得的28个根的数值;

如下是sol['x']中的数值,包含了最终优化后的数值,对比前面通过搜索获得数值,可以看到基本上在10^-6^的内存在一定的误差。

将通过数值计算所得到的28个函数的根绘制在信号波形上,看到他们的分布。

▲ 寻找到的信号过零点

3. 重建结果

根据前面所叙述的方法,使用28个过零点信息重构出的信号波形如下图所示。重构的信号与原始的信号之间波形基本一致,只是相差了一个比例因子。

▲ 重建的波形结果

前面实验中的程序和数据可以在CSDN博文中看到。

http://zhuoqing.blog.csdn/net

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

VGA接口主要用于将计算机的数字图像信号转换成模拟信号,从而可以在显示器上显示。这种接口通常包含15个针脚,分成3排,每排5个孔,可以传输红、绿、蓝三种基本颜色的信号以及水平和垂直同步信号。

关键字: vga接口 信号 电压

现如今,越来越多的半导体厂商开始重视低功耗设计,以不断提升产品性能和优化应用方案来满足更多的市场需求。作为行业的引领者,PI在该领域内必然不会缺席,其最近推出的InnoMux-2™系列单级独立稳压的多路输出离线式电源IC...

关键字: PI IC 电源开关

近日,功率变换IC领域的全球领导者Power Integrations推出了一款InnoSwitch™5-Pro系列高效率、可数字控制的反激式开关IC,旨在为业界提供一种更高功率、更低成本的快充解决方案。

关键字: PI IC 电源开关

近几年,PI围绕氮化镓技术,已经先后推出了750V和900V耐压的PowiGaN™开关器件;而如今,PI为了进一步提高开关电源的效率和可靠性,又全新开发了一款单管氮化镓电源IC——InnoSwitch™3-EP 1250...

关键字: PI IC 氮化镓 开关电源

InnoSwitch3-EP 1250V IC强化了公司在高压氮化镓技术领域的持续领先地位!

关键字: 氮化镓 PI 开关电源

- 经过升级后,MediaGo的IVT过滤器可以识别40多种无效流量 旧金山2023年9月21日 /美通社/ -- 百度国际事业部旗下基于深度学习的智能广告平台MediaGo今天宣布与世界领先的全渠道广告欺诈...

关键字: MEDIA TE PI GO

亚特兰大2023年9月16日 /美通社/ -- 在2023年AppMarket解决方案大奖中,低代码软件开发领域的先驱和领导者Xebia荣获跨行业价值奖。 这一认可凸显了X...

关键字: APP MARKET PPM PI

上海2023年9月15日 /美通社/ -- 9月15日,距离第六届中国国际进口博览会(以下简称进博会)正式开幕倒计时50天。作为全球知名的制造型企业,Brother将在11月...

关键字: IDE 矩阵 通信 SI

杭州2023年9月12日 /美通社/ -- 2023年9月8日,国际独立第三方检测、检验和认证机构德国莱茵TÜV集团(以下简称"TÜV...

关键字: 光伏组件 可持续发展 光伏企业 PI

上海2023年9月4日 /美通社/ -- 2023年8月8日,成都大运会正式落幕。来自113个国家和地区的6500名大学生运动员,在12个比赛日里同台竞技,展现青春与体育的力量。与此同时,在大运会的各个赛场、运动员村以及...

关键字: 信号 TV PS CE
关闭
关闭