当前位置:首页 > 嵌入式 > 嵌入式大杂烩
[导读]好久没更新C语言文章了,今天给大家带来一道经典、易错的关于C语言结构体内存对齐的题目: 求32bit环境下以下结构体所占的字节数: typedef struct test_struct {  char a;    short b;       char c;       int d;  char e; }test_struct; 请说出你的答案:

好久没更新C语言文章了,今天给大家带来一道经典、易错的关于C语言结构体内存对齐的题目:

32bit环境下以下结构体所占的字节数:
typedef struct test_struct
{

 char a;  
 short b;     
 char c;     
 int d;
 char e;
}test_struct;

请说出你的答案:

下面看一下实际测试情况:

1、测试代码:

/***********************************
 * 公众号:嵌入式大杂烩
***********************************/

#include <stdio.h>

typedef struct test_struct
{

 char a;  
 short b;     
 char c;     
 int d;
 char e;
}test_struct;

int main(void)
{
 test_struct test_s;  

 printf("\n============================================\n");
 printf("test_s addr   = %#.8x\n", &test_s);
 printf("test_s.a addr = %#.8x\n", &test_s.a);
 printf("test_s.b addr = %#.8x\n", &test_s.b);
 printf("test_s.c addr = %#.8x\n", &test_s.c);
 printf("test_s.d addr = %#.8x\n", &test_s.d);
 printf("test_s.e addr = %#.8x\n", &test_s.e);
 printf("sizeof(test_s) = %d\n"sizeof(test_s));
 printf("============================================\n");

 return 0;
}

2、运行结果


在32bit环境中,该结构体所占的字节数为16。答对了吗?

嘿嘿,做个小调查(方便以后选题):

运行结果打印输出了很多重要的信息,从结果往前分析思路应该很清晰了吧?

不清晰也没关系,下面我们一起来分析分析:

3、分析

在分析这个问题之前,我们先记住关于结构体内存对齐的三条原则:

(1)结构体变量的起始地址能够被其最宽的成员大小整除。

(2)结构体每个成员相对于起始地址的偏移能够被其自身大小整除,如果不能则在前一个成员后面补充字节

(3)结构体总体大小能够被最宽的成员的大小整除,如不能则在后面补充字节

分析这个问题我们就不考虑编译器可以指定对齐大小的情况了。在32bit环境中,一般默认的对齐大小是4。

下面我们根据这三条原则来分析,并得出如下示意图:


从这张图中我们应该可以很清晰地看出整个结构体变量的内存占用情况。

如果还看不明白的朋友可阅读下面的解释(有点啰嗦,已经看明白的就不用看了~):

从上例的结果中,我们结构体变量test_s的起始地址为0x0028ff30,能够被其最宽的成员(int类型的d成员,占4个字节)整除,符合第(1)条原则。

a成员的地址即为结构体变量的起始地址0x0028ff30,排在a后面的是short类型(两个字节)的b成员。

根据第(2)条规则,显然b的地址不能从0x0028ff31开始,则编译器会在b成员的前一个成员(a成员)后边补1个空白字节,即b的的地址为从0x0028ff32,符合规则(2)。

b成员占两个字节,两个字节之后的地址为0x0028ff34,而c成员为char类型(1字节),则根据规则(2),c成员会存放至地址0x0028ff34处。

c成员占1个字节,1个字节之后的地址为0x0028ff35,排在c后面的是int类型(4个字节)的d成员,显然不能满足规则(2)。

编译器会在d成员的前一个成员(c成员)后面进行字节填充,这里必须填充3个字节才能符合规则(2),此时d会存放至地址0x0028ff38处。

d成员占4个字节,4个字节之后的地址为0x0028ff3c。根据规则(2),e成员可从该地址开始存放。

此时a+空白字节+b+c+空白字节+d+e所占的字节总数为13个字节,而结构体最宽的成员(int类型的d成员)所占字节数为4字节。

显然不能满足规则(3),编译器会在e成员后面填充3个字节。即整个结构体变量test_s所占的总字节数为16字节。

4、实际应用

(1)用保留变量替代填充字节

实际应用中我们可以上面的结构体变量改为:

typedef struct test_struct
{

 char a;  
 char reserve0;    /* 保留成员 */
 short b;     
 char c;     
 int d;
 char e;
 char reserve1[3]; /* 保留成员 */
}test_struct;

我们已经知道了编译器会自动给我们的结构体变量填充一些空白字节,这些填充字节我们是看不到的,是隐性的。

在结构体变量占用相同内存的情况下,我们可以显性的表示出这些填充字节,即创建一些保留成员 。

这样当我们需要给这个结构体添加一些成员时,我们可以把保留的成员替换为实际的成员。这样在一定程度下有利于我们节省内存空间。


(2)调整结构体成员的位置

从上面的分析中我们知道编译器会根据我们结构体成员的排列来进行空白字节填充以达到对齐的效果。

那么我们自己进行手动对齐一些成员,那就可以节省一些空间了。比如把上面的我们的test_struct结构体成员的顺序改为:

typedef struct test_struct
{

 char a;  
 char c; 
 short b;         
 int d;
 char e;
}test_struct;

则结构体变量test_s所占的字节数变为12字节,即:


即比原来的16字节省下了4个字节。

虽然这点优化对于一般的嵌入式应用来说可能没什么必要,但是万一某一天真的需要在某些资源极其受限的嵌入式设备中开发应用,这就是可以优化的一点。

最后

以上就是本次的实验分享。如有错误,欢迎指出!谢谢

这道结构体内存对齐的题目很经典、也很容易出错,是嵌入式C语言笔试、面试题中的高频题目,很有必要弄清楚。

本篇笔记会同步至我的个人博客:https://www.lizhengnian.cn/中,欢迎来访。

原创不易,期待您的在看分享~


猜你喜欢:

【Linux笔记】设备树实例分析

【Linux笔记】通俗易懂的Linux驱动基础

【Linux笔记】pc机_开发板_ubuntu互ping实验
【Linux笔记】挂载网络文件系统

学习STM32的一些经验分享

基于LiteOS的智慧农业案例实验分享

从单片机工程师的角度看嵌入式Linux

笔记:编写简单的内核模块


后台回复:加群。添加ZhengN微信,加入交流群



点个赞,证明你还爱我

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭