当前位置:首页 > 电源 > 功率器件
[导读]什么是PFC?应该如何调试?PFC在电路中的作用是体现电力的利用率,此项系数反映着电路性能的好坏。因此很多设计者对于PFC的调试都非常重视,在本文中小编将对电源达人的经验进行总结,给出一种单级PFC的调试心得,其中包含了很多异常情况的调试方法。

什么是PFC?应该如何调试?PFC在电路中的作用是体现电力的利用率,此项系数反映着电路性能的好坏。因此很多设计者对于PFC的调试都非常重视,在本文中小编将对电源达人的经验进行总结,给出一种单级PFC的调试心得,其中包含了很多异常情况的调试方法。

一、PFC偏低的应对

1、次级去电流(R32)检测电阻加大。

2、光耦供电电阻(R27)加大。

3、比较器电流反馈电容(C18)加大。

4、全电压检测(如:SA7527,L6562的第3脚)电阻(R13)减小。

二、低压异响同时低压掉电流

1、先调整PFC,如PFC正常可按如下方法调整。

2、加大全电压检测电阻(R13),减小和电阻并联的电容,电容(C8)可采用102。

3、确定变压器设计是否合适。调整变压器,减少次级匝数,加大占空比。(本人现在的单级PFC做到60w,全电压输入)

空载电压跳动一般由VCC供电不足所致,可调节电压反馈部分,加大或减小电压反馈电容(C17),电阻(这个电路没有电阻)(用不同的IC做的恒流调整方式不一样)。如果上面方法不行,就减小V CC限流电阻(R7),或增加VCC绕组匝数。

三、启动时灯闪后正常工作

1、一般由电压反馈引起,减小次级比如358电压反馈补偿电容(C17)。

2、减小PWM控制芯片(如:SA7527,L6562)1,2脚的补偿电容(C6)。

3、在电压采样点加一个104的电容,比如输出36v的电源,基准点是2.5v,正采样是68k,负采样5.1k,在5.1k上并联一个104的电容。效果明显(参考电路并联在R26上)。

4、提高空载电压。有些情况下有效。

四、恒流精度偏低

1、可减小去电流采样电阻。

2、检测反馈ic供电是否足够。

3、调整电流反馈的电阻和电容(有些电路设计只有电容。如:385+431就只用调整电容即可)。

五、灯闪

1、一般都伴有PFC过低的现象,先解决PFC。PFC解决后,基本上都会好。

2、减小PWM控制芯片(如:SA7527,L6562)1,2脚的补偿电容。

六、短路保护不良

1、次级反馈最好有独立的供电绕组,且此绕组的供电限流电阻要小。储能电容要大。此绕组和PWM IC的供电绕组,都要绕在中间(如果是三明治绕法的话,最好把这两个绕组,放在中间,就是包在初级里。)

2、加大初级限流电阻。

3、初级ic的电流检测线要短,尽量少拐弯。

七、低压掉电流

1、减小初级限流电阻,效果明显,但会降低短路保护效果。

2、加大IC 3脚对地,全电压检测电阻,以提高3脚电压,但会降低高压是的PF值,不过可以用高压补偿来提高,高压时的PF值,补偿电路很简单没几个原件。

3、加大IC 1,2脚电阻,效果一般,不过加大到10k时效果明显,但会影响PF值。

4、减少变压器次级匝数,以加大占空比,效果很明显,推荐,但注意控制工作频率。太高EMC难搞。

八、电压电流临界范围宽

比如空载电压36v,恒定电流1.5A,有些电源要带载到34v时才能进入恒流模式。

1、加大次级电压反馈的补偿电容,比如说358的电压反馈补偿电容。

2、在电压采样点加一个104的电容,比如输出36v的电源,基准点是2.5v,正采样是68k,负采样5.1k,在5.1k上并联一个104的电容。此做法比调整358反馈补偿电容效果好很多,同时可以有效抑制启动时灯闪一下。

总结

以上8个问题就是大部分设计者在对PFC调试时会遇到的一些问题,本文针对这些问题进行了简单的介绍,并附上多种解决方法来帮助大家从各个方面来分析,可以说是一篇令人受益匪浅的文章。初接触PFC的朋友一定不要错过。以上就是PFC的调试的常见问题解析,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭