当前位置:首页 > > 21ic电子网
[导读]经常有程序员为C++辩护说:“只要你不使用任何从C继承过来的功能,C++就是安全的”!但事实非如此。根据本文作者在大型C++项目上(遵从现代的惯用做法)的经验来看,C++提供的类型完全不能阻止漏洞的泛滥。本文中就会给出一些完全根据现代C++的惯用做法编写的

经常有程序员C++辩护说:“只要你不使用任何从C继承过来的功能,C++就是安全的”!但事实非如此。根据本文作者在大型C++项目上(遵从现代的惯用做法)的经验来看,C++提供的类型完全不能阻止漏洞的泛滥。本文中就会给出一些完全根据现代C++的惯用做法编写的代码,你会发现这些代码仍然会引发漏洞。

以下为译文:

我经常批评内存不安全的语言,主要是C和C++,以及它们引发的大量安全漏洞。根据大量使用C和C++的软件项目的审查结果,我得出了一个结论:软件行业应该使用内存安全的语言(例如Rust和Swift)。


人们常常在回复我时说,这个问题并不是C和C++本身的问题,而是使用这两种语言的开发者的错。


具体来说,我经常听到人们为C++辩护说:“只要你不使用任何从C继承过来的功能,C++就是安全的”(我理解这句话指的是原始指针、数组作为指针使用、手动malloc/free以及其他类似功能。但我认为有一点值得注意,由于C的特性明确地融入了C++,那么在实践中,大部分C++代码都需要处理类似的情况。),或者类似的话,比如只要遵从现代C++的类型和惯用做法,就不会引发内存方面的漏洞。


我很感谢C++的智能指针类型,因为这种类型的确非常有用。不幸的是,根据我在大型C++项目上(遵从现代的惯用做法)的经验来看,光靠这些类型完全不能阻止漏洞的泛滥。我会在本文中给出一些完全根据现代C++的惯用做法编写的代码,你会发现这些代码仍然会引发漏洞。


掩盖“释放后使用”的引用


我想说的第一个例子最初是Kostya Serebryany提出的(https://github.com/isocpp/CppCoreGuidelines/issues/1038),这个例子可以说明C++的std::string_view能够很容易地掩盖“释放后使用”的漏洞:


#include <iostream>
#include <string>
#include <string_view>

int main() {
  std::string s = "Hellooooooooooooooo ";
  std::string_view sv = s + "World\n";
  std::cout << sv;
}


在这段代码中,s + "World\n"分配了一个新的std::string,然后将其转换成std::string_view。此时临时的std::string被释放,但sv依然指向它原来拥有的内存。任何对sv的访问都会造成“释放后使用”的漏洞。


天啊!C++的编译器无法检测到sv拥有某个引用,而该引用的寿命比被引用的对象还要长的情况。同样的问题也会影响std::span,它也是个非常现代的C++类型。


另一个有意思的例子是使用C++的lambda功能来掩盖引用:


#include <memory>
#include <iostream>
#include <functional>


std::function<int(void)> f(std::shared_ptr<int> x) {
    return [&]() { return *x; };
}

int main() {
    std::function<int(void)> y(nullptr);
    {
        std::shared_ptr<int> x(std::make_shared<int>(4));
        y = f(x);
    }
    std::cout << y() << std::endl;
}


上述代码中,f中的[&]表明lambda用引用的方式来捕获值。然后在main中,x超出了作用域,从而销毁了指向数据的最后一个引用,导致数据被释放。此时y就成了悬空指针。即使我们谨慎地使用智能指针也无法避免这个问题。没错,人们的确会编写代码来处理std::shared_ptr<T>&,作用之一就是设法避免引用计数无谓的增加或减少。


std::optional<T>解引用


std::optional表示一个可能存在也可能不存在的值,通常用来替换哨兵值(如-1或nullptr)。它提供的一些方法,如value(),能够提取出它包含的T,并在optional为空的时候抛出异常。但是,它也定义了operator*和operator->。


这两个方法能访问底层的T,但它们并不会检查optional是否包含值。


例如,下面的代码就会返回未初始化的值:


#include <optional>

int f() {
    std::optional<int> x(std::nullopt);
    return *x;
}


如果用std::optional来代替nullptr,就会产生更加严重的问题!对nullptr进行解引用会产生段错误(这并不是安全漏洞,只要不是在旧的内核上)。而对nullopt进行解引用会产生未初始化的值作为指针,这会导致严重的安全问题。尽管T*也可能拥有未经初始化的值,但是这种情况非常罕见,远远不如对正确地初始化成nullptr的指针进行解引用的操作。


而且,这个问题并不需要使用原始的指针。即使使用智能指针也能得到未初始化的野指针:


#include <optional>
#include <memory>

std::unique_ptr<int> f() {
    std::optional<std::unique_ptr<int>> x(std::nullopt);
    return std::move(*x);
}


std::span<T>索引


std::span<T>能让我们方便地传递指向一片连续内存的引用以及长度值。这样针对多种不同类型进行编程就很容易:std::span<uint8_t>可以指向std::vector<uint8_t>、std::array<uint8_t, N>拥有的内存,甚至可以指向原始指针拥有的内存。不检查边界就会导致安全漏洞,而许多情况下,span能帮你确保长度是正确的。


与其他STL数据结构一样,span的operator[]方法并不会进行任何边界检查。这是可以理解的,因为operator[]是最常用的方法,也是访问数据结构的默认方法。而至少从理论上,std::vector和std::array可以安全地使用,因为它们提供了at()方法,该方法会进行边界检查(在实践中我从来没见人用过这个方法,不过可以想象一个项目,通过静态分析工具来禁止调用std::vector<T>::operator[])。span不提供at()方法,也不提供任何进行边界检查的方法。


有趣的是,Firefox和Chromium移植的std::span都会在operator[]中进行边界检查,所以这两个项目也无法安全地移植到std::span上。


结论


现代C++的惯用做法带来了许多改变,能够改善安全性:智能指针能更好地表示预想的生命周期,std::span能保证永远有正确的长度,std::variant为union提供了安全的抽象。但是,现代C++也引入了一些新的漏洞祸根:lambda捕获导致的释放后使用,未初始化的optional,以及没有边界检查的span。


以我编写比较现代的C++的经验,以及审查Rust代码(包括使用了大量unsafe的Rust代码)的经验来看,现代C++的安全性完全比不上那些保证内存安全的语言,如Rust、Swift(或者Python和JavaScript,尽管我很少见到能够合理地用Python或C++编写的程序)。


不可否认,将现有的C和C++代码移植到其他语言依然是个难题。但无论如何,问题应该是我们应该怎样做,而不是我们是否应该做。事实证明,即使最现代的C++惯用做法,也不可能保证C++的正确性。

作者:Alex Gaynor

编译:CSDN-弯月

来源:https://alexgaynor.net/2019/apr/21/modern-c++-wont-save-us/

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭