当前位置:首页 > 半导体 > 半导体
[导读]现代微处理器是世界上最复杂的系统之一,但其核心是一个非常简单而优美的器件——晶体管。微处理器中有数十亿个近乎完全相同的晶体管。因此,提高晶体管的性能和密度是促使微处理器及受其驱动的计算机更高效工作的最直接的方法。

现代微处理器是世界上最复杂的系统之一,但其核心是一个非常简单而优美的器件——晶体管。微处理器中有数十亿个近乎完全相同的晶体管。因此,提高晶体管的性能和密度是促使微处理器及受其驱动的计算机更高效工作的最直接的方法。

硅晶体管尺度的不断缩小推进着电子技术的进步。当摩尔定律走到止境,硅晶体管缩小变得越来越困难。以半导体碳纳米管为基础的晶体管,作为先进微电子器材中硅晶体管的替代品,与金属氧化物半导体场效应管(MOSFET)相似,它成为构建下一代计算机的基本单元。当然,尽管碳纳米管场效应晶体管(CNFET)比硅场效应晶体管更节能,但它们现在仍大多存在于实验室傍边。

现在,麻省理工学院Shulaker研讨团队经过对规范纳米管堆积溶液工艺进行优化,将少数的纳米管溶液堆积在晶圆上,明显进步了吞吐量,加快了堆积过程的速度超越1,100倍,一起降低了本钱。

这使他们可以在商业硅制作厂和大批量半导体代工中制作碳纳米管场效应晶体管。Max M. Shulaker是2013年第一台碳纳米管计算机研讨成果第一作者;于2016年加入MIT担任助理教授,继续开展碳纳米管相关的研讨。 现在,将碳纳米从实验室转移到工业场景面对的中心应战在于:

一切用于制作碳纳米管场效应晶体管的资料和工艺有必要满足硅基商业制作设备的严格的兼容性要求,更深层次的应战还在于,如何在工业规范基板尺度(200mm直径的晶圆及以上)上均匀地堆积碳纳米。 要完成这种碳纳米堆积技术有必要满足三个条件:

一是在确保规模化出产的一起,最大极限地降低本钱;

二是要可以利用现有设备,不引入制止的化学污染物或微粒;

三是要完成比同等尺度硅基更强的功能。

在实验室中构建CFNET的最有效的办法之一是纳米管堆积办法,即将晶圆浸泡在纳米管液中,直到纳米管粘在晶圆外表。

碳纳米管场效应晶体管(CNFETs)的功能在很大程度上是由堆积工艺决定的,它影响着晶圆外表碳纳米管的数量和方向。"它们 "要么以随机的方向粘在晶圆上,要么全部排列在同一方向。 这种堆积办法尽管对工业界来说很实用,但底子无法使纳米管对齐。经过对堆积过程的仔细观察,研讨人员发现干式循环,一种间歇性地干燥浸泡晶圆的办法,可以将堆积时间从48小时大幅缩短到150秒。

经过ACE办法培养进步碳纳米管堆积的办法。 于是,他们提出了ACE(经过蒸腾人工浓缩),将少数的纳米管溶液堆积在晶圆上,而不是将晶圆浸泡在槽中。溶液的缓慢蒸腾增加了碳纳米管的浓度和堆积在晶圆上的纳米管的总体密度。

现在,研讨人员与商业硅制作厂Analog Devices和半导体代工厂SkyWater Technology合作,运用改进后的办法制作出了CNFET。他们可以运用这两家工厂制作硅基晶圆所运用的相同设备,一起也确保了纳米管溶液符合这两家工厂对化学和污染物的严格要求。

值得注意的是,该研讨产出的并非传统意义上的计算机芯片,仅是制作工艺的演示,并且晶体管的栅极长度(即制程)为130nm,相当于2001年代的芯片工艺。新工艺也只完成了45个纳米管/微米,这仍然明显低于之前研讨人员预测的200个的最佳密度。 不过,研讨人员还对纳米管的密度与能效联系进行了剖析:即便在较低的密度下,节省的本钱也会很可观。

即便纳米管密度为25,也会带来2.5倍的能效提升。尽管要将这一突破转化为一个实用芯片技术还有很长的路要走,但它是朝着高功能纳米管计算的未来迈出的重要一步,可能成为摩尔定律之后下一个最为重要的「兵器」。

晶体管的密度随着每一个技术节点的增加而增加,纳米管设计是在不断的延伸摩尔定律,相信这种晶体管的性能会有无限潜力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭