当前位置:首页 > 公众号精选 > 嵌入式案例Show
[导读]点击上方蓝字关注我哦~ 01 前言 本篇文章列出了影响模数转换精度的主要误差。这些类型的误差存在于所有模数转换器中,转换质量将取决于它们的消除情况。STM32微控制器数据手册的ADC特性部分规定了这些误差 值。规定了STM32 ADC的不同精度误差类型。为便于参

点击上方蓝字关注我哦~

01

前言



本篇文章列出了影响模数转换精度的主要误差。这些类型的误差存在于所有模数转换器中,转换质量将取决于它们的消除情况。STM32微控制器数据手册的ADC特性部分规定了这些误差 值。规定了STM32 ADC的不同精度误差类型。为便于参考,将精度误差表达为1 LSB的倍数。就 电压而言,分辨率取决于参考电压。通过将LSB数乘以1 LSB对应的电压来计算电压误差。

02

 ADC自身导致的误差


偏移误差

偏移误差是第一次实际转换和第一次理想转换之间的偏离。第一次转换发生在数字ADC输出 从0变为1时。理想情况下,当模拟输入介于0.5 LSB和1.5 LSB之间时,数字输出应为1。仍然是理想情况下,第一次转换发生在0.5 LSB处。用EO表示偏移误差。可通过应用固件轻松校准偏移误差。

示例:

对于STM32 ADC,电压的最小可检测增量变化用LSB表示为:

 1 LSB = VREF+/4096(在某些封装上,VREF+ = VDDA)。 

如果 VREF+ = 3.3 V,则在理想情况下, 402.8 µV (0.5 LSB = 0.5 × 805.6 µV)的输入应导致生成数字输出 1。但实际上, ADC 可能仍然提供读数 0。如果从 550 µV 的模拟输入获得 数字输出 1,则:

 偏移误差 = 实际转换 – 理想转换 

EO = 550 µV – 402.8 µV = 141.2 µV 

EO = 141.2 µV / 805.6 µV = 0.17 LSB

当大于0.5 LSB的模拟输入电压生成第一次转换时,偏移误差为正。如下图:

当小于0.5 LSB的模拟输入电压生成第一次转换时,偏移误差为负。如下图:

增益误差

增益误差是最后一次实际转换和最后一次理想转换之间的偏离。增益误差用EG表示。最后一次实际转换是从0xFFE到0xFFF的转换。

理想情况下,当模拟输入等于VREF+ – 0.5  LSB时,应存在从0xFFE到0xFFF的转换。因此对于VREF+= 3.3 V,最后一次理想转换应发生 在3.299597 V处。如果ADC提供VAIN < VREF+ – 0.5 LSB的0xFFF读数,将获得负增益误差。

示例

按以下公式计算增益误差: 

EG = 最后一次实际转换 – 理想转换 

如果VREF+ = 3.3 V且VAIN = 3.298435 V时生成从0xFFE到0xFFF的转换,则:

 EG = 3.298435 V – 3.299597 V 

EG = –1162 µV 

EG = (–1162 µV / 805.6 V) LSB = –1.44 LSB 

如果VAIN等于VREF+时没有得到满量程读数(0xFFF),则增益误差为正。

正增益误差的表示方法:

负增益误差的表示方法:


微分线性误差

微分线性误差(DLE)为实际步进和理想步进之间的最大偏离。这里的“理想情况”不是指理想传输曲线,而是指ADC分辨率。在下图中,用ED表示DLE。 

ED = 实际步宽 – 1 LSB

理想情况下,1 LSB的模拟输入电压变化量应导致数字代码变化。如果需要大于1 LSB的模拟输入电压才能导致数字代码变化,将观察到微分线性误差。因此,DLE对应于从一个数字代 码变为下一个数字代码所需的最大额外电压。DLE也称为微分非线性(DLE)误差。


示例

给定数字输出应对应于模拟输入范围。理想情况下,步宽应为1 LSB。我们假设1.9998 V至 2.0014 V模拟输入电压范围内的数字输出相同,则步宽为:2.0014 V – 1.9998 V = 1.6 mV。因此,ED等于较高(2.0014 V)和较低(1.9998 V)模拟电压之间的电压差减去1 LSB所对 应的电压

如果VREF+ = 3.3 V,则1.9998 V(0x9B1)的模拟输入可提供介于0x9B0和0x9B2之间的结 果。同样地,2.0014 V(0x9B3)的输入可提供介于0x9B2和0x9B4之间的结果。因此,0x9B2步进所对应的总电压变化量为: 

0x9B3 – 0x9B1,

即 2.0014 V – 1.9998 V = 1.6 mV (1660 µV) 

ED = 1660 µV – 805.6 µV 

ED = 854.4 µV 

ED = (854.4 µV/805.6 µV) LSB 

ED = 1.06 LSB 

假设当步宽小于1 LSB时,电压高于2.0014 V不会导致0x9B2数字代码,则ED为负

积分线性误差

积分线性误差为任何实际转换和端点相关线间的最大偏离。在下图中,用EL表示ILE。端点相关线可以定义为A/D传输曲线上连接第一次实际转换与最后一次实际转换的线。EL是指与每一次转换的这条线的偏离。因此,端点相关线对应于实际传输曲线并且与理想传输曲线不相关。ILE也称为积分非线性(INL)误差。ILE是整个范围内DLE的积分。

示例 

如果从 0 到 1 的第一次转换发生在 550 µV 处并且最后一次转换 (0xFFE 到 0xFFF)发生在 3.298435 V (增益误差)处,则传输曲线上连接实际数字代码 0x1 和 0xFFF 的线为端点相关线。

总未调整的误差

总未调整误差(TUE)为实际和理想传输曲线间的最大偏离。此参数指定可能发生的会导致理想数字输出与实际数字输出之间最大偏离的总误差。TUE是记录到的任何输入电压的理想预期值与从ADC获得的实际值之间的最大偏离。在下图中,用ET表示TUE。TUE不是EO、EG、EL与ED之和。偏移误差影响较低电压的数字结果,而增益误差影响较高电压的数字输出。 

示例

如果VREF+ = 3.3 V且VAIN = 2 V,则理想结果为0x9B2。但是,如果得到的转换结果为0x9B4, 由于DLE和ILE同时发生,因此偏离可能源于偏移。 

TUE = 绝对(实际值 – 理想情况值) 

         = 0x9B4 – 0x9B2 = 0x2 = 2 LSB。

/ The End /

文档来源:how-to-get-the-best-adc-accuracy-in-stm32-microcontrollers-stmicroelectronics.pdf

推荐阅读


STM32 ADC内部原理


STM32 时钟分析


扫码关注我们

看更多嵌入式案例


喜欢本篇内容请给我们点赞、在看

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

ADC(Analog to Digital Converter, 模数转换器), 用于实现模拟信号向数字信号的转换。A/D转换的作用是将时间连续、幅值也连续的模拟信号(电信号)转换为时间离散、幅值也离散的数字信号(二进制...

关键字: ADC 转换原理 模拟信号

一直以来,ADC模数转换器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来模数转换器的相关介绍,详细内容请看下文。

关键字: ADC 模数转换器

本款ADC具有高通道密度优势,可使CT模组达到更小像素,使CT扫描仪的成像质量达到较高的分辨率。

关键字: ADC

这款测试芯片是业界首款采用12纳米FinFet(FF)技术为音频IP提供完整解决方案的产品。该芯片完美结合了高性能、低功耗和优化的占板面积,为电池供电应用提供卓越的音质与功能。这款专用测试芯片通过加快产品上市进程、提供同...

关键字: 测试芯片 半导体 ADC

2024年1月23日,鼎阳科技正式发布8GHz带宽高分辨率示波器,树立了国产高分辨率示波器的新标杆。此次发布的示波器为SDS7000A系列推出的新型号SDS7804A,具备12-bit高精度ADC,1Gpts存储深度,支...

关键字: 示波器 ADC 第三代半导体

本文介绍新一代多路复用模数转换器(ADC)如何提供更多通道、更深入的信号链集成、灵活性和鲁棒性优势,以简化复杂系统设计,从而支持在先进工厂和生产设施中实现自动化和过程控制。

关键字: ADC RC低通滤波器 鲁棒性

新厂房将提供从抗体中间体到偶联原液及制剂的一站式临床和商业化生产服务 产能翻番,为需求激增的全球偶联药行业提供更强大赋能 无锡2023年9月20日 /美通社/ -- 全球领先的生物偶联药合同研究、开发和生...

关键字: ADC 全自动 新加坡 自动化系统

公司工业电子产品有着广阔的市场空间,应用于工业测量和信号调理的SmartAnalog系列高精度SOC芯片已正式发布,正在拓展品牌工业客户的导入。

关键字: SAR ADC SmartAnalog

SAR ADC是一个非常常见的拓扑结构,这是一种在速度、分辨率和功率之间提供了很好平衡的折衷方案。SAR ADC的一个关键优势是几乎没有延迟。因此在很多应用领域都能看到使用SAR ADC。

关键字: SAR ADC 拓扑结构

高精度ADC即高精度模数转换器,是一种能够将输入模拟信号转换为数字信号的芯片,在多种工业、医疗和科研领域都有广泛应用。高精度ADC的主要特点是能够提供高分辨率、高速度和高精度的模数转换,并且具有很强的抗噪能力和线性度。

关键字: ADC 高精度ADC 模数转换
关闭
关闭