当前位置:首页 > 电源 > 电源-能源动力
[导读]什么是锂离子电池高压电解液?随着全球多样化的发展,我们的生活也在不断变化着,包括我们接触的各种各样的电子产品,那么你一定不知道这些产品的一些组成,比如锂离子电池高压电解液。

什么是锂离子电池高压电解液?随着全球多样化的发展,我们的生活也在不断变化着,包括我们接触的各种各样的电子产品,那么你一定不知道这些产品的一些组成,比如锂离子电池高压电解液。

锂离子电池的高压阴极数据已成为近年来的研究热点。具有更好的性能,更高的能量和更高的电压的新型锂离子电池的开发是电源领域中的当前研究热点。近年来,以LiNi0.5Mn1.5O4和LiCoPO4为代表的高压正极的数据发展迅速,而支持电解质相对落后。因此,5V电解液系统的研发是迫切需要解决的关键问题。
锂电池使用寿命长,能量密度高,充放电性能稳定。它们已广泛应用于日常电子产品中,并且还是许多大型移动设备的主要候选电源之一。增加电池的工作电压是获得高比能锂电池的有效方法,因此有必要开发一种高压电解质系统。本文将总结几种高压电解液系统。
碳酸盐溶剂:传统的碳酸盐岩石溶剂因其高电导率,锂盐的良好溶解性以及在负极表面形成稳定的固体电解质界面膜(SEI)的能力而一直被认为是一般电解质的最佳选择。 然而,传统碳酸盐在高压电池系统中的适用性不好。这是因为传统的碳酸盐溶剂具有低的氧化电位,并且在高电势的氧化和分解下易于提前侵蚀。另外,锂离子电池的电解质中的水含量被认为是确定电池质量的关键标准。高压电解质对水有更高的要求。如果电解质中的水含量稍高,它将大大降低电解质的电阻氧化性能。


氟碳酸盐:聚氟烷基碳酸酯具有较强的化学稳定性,疏水性和疏油性。它可以在电极表面上形成双层钝化膜,以减少电极表面的降解和电解质的分解。并且,全氟化碳取代基的碳链越长,亲核能力越强,越容易在电极表面上形成钝化膜,但是分子间力将相应地增加,导致粘度增加和导电性降低。
离子液体:离子液体是完全由阳离子和阴离子组成的盐。在室温下为液体,可以导电。离子液体具有低挥发性,低易燃性,高离子电导率和宽的电化学窗口的优点。由于离子液体的这些特性,近年来对离子液体进行了广泛的研究,并将其用作改善高容量和高电压下锂离子电池的电化学和热稳定性的新型电解质。结果表明,与传统的基于lipf6的电解质相比,吡咯-哌啶基二氟甲基磺酰亚胺盐离子液体更适合5V高压电解质数据。
含磷的碳酸盐:向碳酸盐中添加适量的添加剂,例如亚磷酸三(2,2,2-三氟乙基)酯(TTFP):可以在阴极表面形成稳定的CEI钝化膜; TTFP(III)中心的磷原子具有一对孤对电子,这些电子可与含LiPF6的电解质中的PF6-配位,形成稳定的锂盐配合物;磷(III)原子不是处于最高价态,并且容易被氧化形成可溶的磷酸盐化合物,从而有效地抑制了碳酸盐的氧化分解并进一步改善了电池循环性能。
氟溶剂:由于氟原子具有强电负性和弱极性,因此氟溶剂具有较高的电化学稳定性。研究人员研究了一系列氟化有机碳酸酯溶剂,发现氟碳酸盐溶剂中的氟元素显着改善了氟碳酸盐的抗氧化功能。氟化乙烯,碳酸2,2,2-三氟乙基乙酯和碳酸2,2,2-三氟乙基乙酯的氧化电位明显高于碳酸乙酯(EC)和碳酸甲基乙酯的氧化电位。碳酸盐(EMC)和碳酸乙酯(DEC)。但是,随着被氟取代的氢原子数增加,LiPF6在溶剂中的溶解度大大降低。
砜高压电解液:砜有机物的介电常数大于40,低于5.5V处于稳定状态。例如,环丁砜(SL)是具有高介电常数,宽的电化学窗口和强极性的常见溶剂。但是,砜类有机物具有高粘度,高熔点,并且与石墨负极材料的相容性差。通常必须添加添加剂以降低粘度并增加电解质的电导率。因此,提高砜电解质的安全性能和降低砜的粘度仍是研究方向。


在研究设计过程中,一定会有这样或着那样的问题,这就需要我们的科研工作者在设计过程中不断总结经验,这样才能促进产品的不断革新。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭