当前位置:首页 > 电源 > 电源-能源动力
[导读]在生活中,你可能接触过各种各样的电子产品,那么你可能并不知道它的一些组成部分,比如它可能含有的锂离子电池电解液,那么接下来让小编带领大家一起学习锂离子电池电解液。

在生活中,您可能接触过各种电子产品,然后您可能不知道其中的某些组件,例如其中可能包含的锂离子电池电解质,然后让编辑带领所有人一起学习锂离子电池电解质。
众所周知,锂离子电池的主要成分包括四个方面:正极材料,负极材料,电解质和隔膜。作为锂离子电池的重要组成部分,电解质在改善锂离子电池的循环性能和能量密度方面起着不可替代的作用,从而进一步扩大了电动汽车的使用寿命。锂离子电池的能量密度取决于电池的电压和容量。为了增加电池的能量密度,除了增加正极材料和负极材料的容量之外,另一种方法是增加电池的工作电压。高压性能也提出了新的技术要求。锂离子电池电解质成分通常包括电解质锂盐,高纯度有机溶剂和具有某些特定成分的添加剂。
但是,在该阶段使用的有机溶剂电解质在电池被外部损坏时非常容易着火和燃烧,甚至发生爆炸事故。这是现阶段锂离子电池生产和使用中的不安全因素之一。为了解决诸如电池安全性的问题,不断地更新电解质。
高比能电解质:追求高比能是目前锂离子电池的最大研究方向,特别是当移动设备在人们的生活中占有越来越大的比例时,电池寿命已成为电池最关键的性能。


有机液体电解质:碳酸盐有机液体是锂盐的良好溶剂,氧化电位为4.7V,还原电位约为1.0V(本文中的电压值相对于锂的电位);另外,碳酸盐的粘度相对较低,用于锂离子迁移的活化能也较低。因此,最常用的电解质是碳酸盐及其混合物,包括PC,EC,DEC,DMC,EMC等。碳材料的电化学势通常高于碳酸盐溶剂的最低未占据分子轨道。为了将碳材料用作负极,通常必须在溶剂中包括EC,因为EC可以在碳负极的表面上形成钝化的SEI膜。这抑制了电解质的分解。
大功率电解液:目前,商用锂离子电池很难实现高速率连续放电。重要的原因是电池接线片会产生严重的热量,并且内阻会导致电池的整体温度过高,从而很容易导致热失控。因此,电解质应能够防止电池在保持高电导率的同时过快升温。对于动力锂电池,快速充电也是电解质发展的重要方向。
最近,由于室温离子液体具有很高的氧化电位(约5.3V),因此人们认为室温离子液体(例如1MLiTFSI / EMI-TFSI,EMIBF4,BMIBF4等)可用来代替锂离子电池电解质。不可燃,蒸气压低。 具有较好的热稳定性,无毒,高沸点,高锂盐溶解度等优点。然而,离子液体的高粘度削弱了锂离子的迁移率。咪唑鎓盐阳离子液体最可能用于锂电池电解质,因为它们在室温下的粘度较低,而锂盐的溶解度较高。然而,当电压低于1.1V时,这种类型的离子液体具有差的稳定性,因此必须添加EC或VC以在碳阳极上形成稳定的SEI膜。
宽温度电解液:电池在高温下容易分解电解液,并加剧了材料与电解液部件之间的副反应。在低温下,可能会发生电解质盐沉淀,并且SEI膜的负阻抗将加倍。所谓宽温度电解液就是使电池具有更宽的工作环境。
固体聚合物电解质:理想的固体电解质可用作正极和负极之间的隔板。同时,当电极材料的体积在电池的充电和放电期间改变时,它可以保持电极/电解质界面之间的良好接触。含锂盐(LiPF6或LiAsF6)的聚环氧乙烷(PEOs)成本低,无毒且化学稳定,但对于动力电池系统,其室温离子电导率较低,约为10-5S / cm。
混合电解质系统:混合电解质根据其各自的优缺点,是有机液体电解质,离子液体,聚合物基电解质和无机固体电解质的组合。包括:聚合物基质+有机液体形成的聚合物凝胶电解质;离子液体+聚合物基础电解质混合而成的离子液体聚合物凝胶;以及具有多种成分的其他复合电解质。
相信通过阅读以上内容,每个人都对锂离子电池电解液有了初步的了解,希望大家在学习过程中进行总结,以不断提高他们的设计水平。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭