当前位置:首页 > > TsinghuaJoking
[导读]Raspberry PI Pico小型MCU模块,以其价格低廉,功能丰富,开发方便为很多非电子类专业的同学进行创意项目原型设计提供了方便的平台。

▲ 实验电路板

Raspberry PI Pico小型MCU模块,以其价格低廉,功能丰富,开发方便为很多非电子类专业的同学进行创意项目原型设计提供了方便的平台。下面的一些实验给CDIE课程设计同学们制作的一些基本演示实验。

01 PI Pico实验板


RASPBERRY PI PICO 开发板 基础测试[1] 给出了对PI Pico开发板的基本设置,通过 安装Thonny开发环境[2] 可以方便对Pi Pico进行初步的开发。

▲ Pi Pico电路板的正反面

本文下面根据 Raspberry  Pi Pico Python SDK[3] 中给的示例,对PI Pico的一些基本模块进行测试。

关于Pi Pico的管脚配置,可以参见 Pi Pico数据手册[4] 中给出的Pi Pico管脚图定义:

▲ Pi Pico管脚功能定义图

更多PiPico的资料可以从:Pi Pico官方网站[5] 获得。

02 基本测试


1.Flash LED on board

from machine import Pin,Timer from time import sleep_us

led = Pin(25, Pin.OUT)
tim = Timer()

print("Flash LED.") def tick(timer): global led
    led.toggle()

tim.init(freq=2, mode=Timer.PERIODIC, callback=tick)

▲ 实验电路板

2.UART

(1)测试程序

from machine import UART,Pin,Timer from time import sleep_us

uart = UART(0, baudrate=115200, tx=Pin(0), rx=Pin(1), bits=8, parity=None, stop=1)
led = Pin(25, Pin.OUT)

tim = Timer()

print("Send UART.") def tick(timer): global uart, led

    led.toggle()
    uart.write(b'\x55')

tim.init(freq=10, mode=Timer.PERIODIC, callback=tick)

▲ 测试Pin(0)

▲ 测量Pin(0)的波形

3.ADC

通过ADC通道4,读取芯片内部温度。在此过程中,使用手触摸Pi Pico表面加热,或者使用酒精喷洒芯片表面进行降温。

▲ 读取芯片内部的温度

import machine import utime

sensor_temp = machine.ADC(4)
conversion_factor = 3.3/(65535) while True:
    read = sensor_temp.read_u16() * conversion_factor

    temperature = 27 - (read - 0.706) / 0.001721 print(temperature)
    utime.sleep(2)

▲ 显示读取的温度值

▲ 读取的温度数值变化

4.PWM

(1)PWM驱动LED

控制板载LED的波形是PWM运行。

from machine import Pin,PWM import time

pwm = PWM(Pin(25))

pwm.freq(1000)

duty = 0 direction = 1 for _ in range(16*255):
    duty += direction if duty > 255:
        duty = 255 direction = -1 elif duty < 0:
        duty = 0 direction = 1 pwm.duty_u16(duty*duty)
    time.sleep(0.001)

PWM是软件PWM,它可以设置在任意管脚上。初步测试过Pin0, 15, 16等等。都具有相类似波形。

▲ Pin25(驱动LED)的波形变化

▲ LED亮度变化

(2)PWM驱动舵机

舵机使用频率为50Hz,脉冲宽度cs 1.0 ~ 2.0ms的脉冲作为控制信号。下面是产生基本舵机位置中间时的输出控制脉冲。

from machine import Pin,PWM import time

pwm = PWM(Pin(15))

pwm.freq(50)
pwm.duty_u16(4915)

舵机具有三个接线:

  • 棕色:GND
  • 红色:+4.5 ~ +6V
  • 黄色:指令脉冲信号

▲ 舵机及其接口

计算Duty_16公式为:

对应脉冲宽度与duty_u16之间的关系:

脉冲宽度(ms) duty u16
1 3277
1.5 4915
2 6554

▲ 输出50Hz,1.5ms脉冲宽度

▲ 变化的PWM波形驱动舵机旋转

from machine import Pin,PWM import time

pwm = PWM(Pin(16))

pwm.freq(50) for _ in range(100):
    pwm.duty_u16(3276)
    print("Out pulse width : 1ms")
    time.sleep(1)

    print("Out pulse with : 2ms.")
    pwm.duty_u16(6553)
    time.sleep(1)

(3)PWM+ADC实验

使用电位器将改变的电压引入ADC(0),由单片机获得对应的ADC数值,改变PWM输出,使其输出的时间宽度从1ms等比例变化到2ms。

▲ 将电位器输入ADC(0)

可以看到舵机的输出角度随着电位器的改变而发生变化。

▲ 旋转电位器改变舵机的角度

from machine import Pin,PWM import time

pwm = PWM(Pin(16))

pwm.freq(50)

control = machine.ADC(0) for _ in range(1000):
    adc = control.read_u16()
    duty = int(adc * (6553-3276)/0xffff) + 3276 pwm.duty_u16(duty)
    time.sleep(0.1)

5.中断IRQ

使用管脚PIN2的下降沿产生中断。示例程序如下:

from machine import Pin

p2 = Pin(2, Pin.IN, Pin.PULL_UP)

p2.irq(lambda pin:print("IRQ with flag:",
        pin.irq().flags()),
        Pin.IRQ_FALLING)

使用跳线将PIN2接地。每一次等会触发中断发生一次。

▲ 将PIN2接地可以看到触发了中断

▌结论


通过几个基础的Pi Pico实验,初步给出了该模块的应用实例。

参考资料

[1] RASPBERRY PI PICO 开发板 基础测试: https://zhuoqing.blog.csdn.net/article/details/114037888

[2] 安装Thonny开发环境: https://zhuoqing.blog.csdn.net/article/details/114064833

[3]

Raspberry  Pi Pico Python SDK: https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf

[4]

Pi Pico数据手册: https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf

[5]

Pi Pico官方网站: https://www.raspberrypi.org/documentation/rp2040/getting-started/

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭