当前位置:首页 > 模拟 > 模拟技术
[导读]先前媒体报道,仍在DRAM市场占有率领先全球的韩国大厂三星,竞争对手持续精进技术,甚至宣布超越三星推出新一代技术产品后,三星开始担心失去全球龙头位置。韩国媒体《BusinessKorea》报道,三星准备打破DRAM业界传统,将公布DRAM产品电路线宽,以显示三星技术在对手竞争下持续维持领先。


动态随机存取存储器(Dynamic Random Access Memory,DRAM)是一种半导体存储器,主要的作用原理是利用电容内存储电荷的多寡来代表一个二进制比特(bit)是1还是0。由于在现实中晶体管会有漏电电流的现象,导致电容上所存储的电荷数量并不足以正确的判别数据,而导致数据毁损。因此对于DRAM来说,周期性地充电是一个无可避免的要件。由于这种需要定时刷新的特性,因此被称为“动态”存储器。相对来说,静态存储器(SRAM)只要存入数据后,纵使不刷新也不会丢失记忆。

动态随机存取存储器(Dynamic Random Access Memory,DRAM)是一种半导体存储器,主要的作用原理是利用电容内存储电荷的多寡来代表一个二进制比特(bit)是1还是0。由于在现实中晶体管会有漏电电流的现象,导致电容上所存储的电荷数量并不足以正确的判别数据,而导致数据毁损。因此对于DRAM来说,周期性地充电是一个无可避免的要件。由于这种需要定时刷新的特性,因此被称为“动态”存储器。

相对来说,静态存储器(SRAM)只要存入数据后,纵使不刷新也不会丢失记忆。与SRAM相比,DRAM的优势在于结构简单——每一个比特的数据都只需一个电容跟一个晶体管来处理,相比之下在SRAM上一个比特通常需要六个晶体管。正因这缘故,DRAM拥有非常高的密度,单位体积的容量较高因此成本较低。但相反的,DRAM也有访问速度较慢,耗电量较大的缺点。与大部分的随机存取存储器(RAM)一样,由于存在DRAM中的数据会在电力切断以后很快消失,因此它属于一种易失性存储器(volatile memory)设备。

DRAM的电路线宽被业界认定是衡量半导体内存公司技术能力的重要指标,原因是DRAM的电路线宽越窄,功率效率就越高。涉及技术机密情况下,过去DRAM业界传统就是不明确公开产品确切电路线宽。随着DRAM制程技术2016年进入10纳米级制程,DRAM制造商普遍共识避免过去参与相关技术与市场的恶性竞争。进入10纳米级制程后,DRAM制造商要将电路线宽缩小1纳米,就需2~3年研发时间,如此长时间与成本投入,也代表通过技术议题营销的效果并不大。

基于以上因素,过去5~6年,全球DRAM制造商从未确实发布DRAM产品电路线宽数字。这也是DRAM产业普遍将2016年推出的10纳米级制程归类为第一代1x纳米制程,将2018年推出的10纳米级制程归类为第二代1y纳米制程,以及在同一年推出的10纳米级制程归类为第三代1z纳米制程,之后于2021年初问世问世的第四代10纳米级制程,称为1a纳米制程的原因。

与CPU等逻辑芯片直接使用准确的工艺不同,内存芯片在20nm之后就变得模糊了,厂商称之为10nm级工艺,实际上会用1X、1Y、1Znm来替代。

1X、1Y、1Znm到底是什么工艺?三星、SK海力士及美光三大内存巨头之前一直不肯明确,按照业界的分析,大体来说1Xnm工艺相当于16-19nm级别、1Ynm相当于14-16nm,1Znm工艺相当于12-14nm级别。

在1X、1Y、1Znm之后,还会有1αnm、1βnm、1γnm三种工艺,三星今年下半年量产1αnm工艺的内存。

值得一提的是,在最新的公告中,三星也首次明确了1αnm的具体水平,那就是14nm工艺,这还是三家厂商中首个改变内存工艺定义的。

至于三星为什么要打破常规,很有可能跟1αnm内存工艺进度落后有关,今年1月份美光就宣布量产1αnm工艺内存芯片了,三星晚了几个月,现在透明化具体工艺,也有将美光一军的意味,因为三星早前就怀疑美光的1αnm工艺并不是真正的1αnm,就看美光是否接招了。

此前,三星宣布成功出货首批100万个基于极紫外光刻(EVU)技术的10nm级(D1a)DRAM内存模块。基于EUV的DRAM将供给高端PC、移动和企业服务器、数据中心应用。

三星预计明年开始批量生产基于EUV的DDR5和LPDDR5内存芯片。值得一提的是,应用EUV技术的第四代10nm工艺被称为1a,这是在之前三代10nm级工艺用完了传统x、y、z节点代号的情况下做出的决定。

根据三星给出的信息,第三代DDR4 DRAM也就是1z-nm级,相比此前的1y-nm在生产效率上有了20%的提升,更容易满足市场对内存芯片的需求。并且工艺的进步也会带来效能的提升,同样的存储体积下,1z-nm能实现更优的耗电和执行效率。

三星电子预计,采用1z-nm工艺制造的第三代8GB DDR4 DRAM芯片将从2019年下半年开始大规模生产,有望适用于未来2020年生产的下一代服务器和高端PC产品。

当前的内存芯片规格除了PC上主流的DDR4之外,还有DDR5、LPDDR5和GDDR6等等。三星认为在DDR4上成功使用的1z-nm工艺,为拓展到其他规格上打下了基础,今后我们有望在更多的内存产品上见到1z-nm工艺的应用。

2021年DRAM将进入1α工艺DRAM技术节点,而EUV设备是未来DRAM技术发展的关键,因为与氟化氩(ArF)微影技术相比,EUV光源波长从 193nm 直接下降到了 13.5nm,光源的波长越短,在硅基板上雕出来的线宽就越细,有利于让半导体的电路图案越趋微细化,不仅能减少复杂的制造工序,同时提高半导体生产效率。

三星在2020年就首次导入了EUV设备量产16Gb LPDDR5,基于1Znm制程技术,更先进的技术相较于12Gb容量提升了33%,封装的厚度也薄了30%。同时,三星也规划将在2021年大量生产基于第四代10nm级(1α)EUV工艺的16Gb DDR5/LPDDR5。

三星电子已经明确表示会在今年下半年实现量产,成品的8GB DDR4模组也在验证中,目标领域是下一代企业级服务器和2020年的高端PC产品。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭