当前位置:首页 > 电源 > 功率器件
[导读]在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的电力晶体管吗?电力晶体管是双极大功率和高背压晶体管。由于其功率非常大,所以也被称为巨型晶体管,简称GTR。 GTR由三层半导体材料和两个PN结组成。三层半导体材料的结构可以是PNP或NPN。

在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的电力晶体管吗?电力晶体管是双极大功率和高背压晶体管。由于其功率非常大,所以也被称为巨型晶体管,简称GTR。 GTR由三层半导体材料和两个PN结组成。三层半导体材料的结构可以是PNP或NPN。大多数双极型功率晶体管是在重掺杂的N+硅衬底上生长,采用外延生长的方法在N+上生长N漂移层,然后在漂移层上扩散P基区,再扩散N+发射区。这称为三重扩散。基极和发射极在同一平面上相互交叉,以减少电流集中并提高器件的电流处理能力。

GTR分为NPN型和PNP型两种,有单管GTR、达林顿GTR(复合管)GTR模块几种形式。单管GTR饱和压降VCES低,开关速度稍快,但电流增益β小,电流容量小,驱动功率大。它用于较小容量的逆变器电路。

Darlington GTR电流增益β值大,电流容量大,驱动功耗小,但饱和压降VCES较高,关断速度较慢。与单管 GTR 一样,达林顿式非模块化 GTR 长期以来在现代逆变器电路中不太常用。 GTR模块使用更广泛。它将两个或四个、六个甚至七个单管 GTR 或达林顿式 GTR 管芯封装在单个管壳中,形成单桥臂、单相桥、三相桥和漏电三放电管采用相桥形式,外壳绝缘,设计安装方便。

在逆变电路中,GTR都工作在共发射极状态,其输出特性曲线是指集电极电流IC与电压VCE和基极电流IB的关系。

电力晶体管gtr的特性及应用

GTR的特性曲线分为5个区域。I区是截止区,IB=0IC很小,是CE漏电流。II区是线性放大区。当IB增加时,IC也随IB线性增加。随着VCE的不断降低,IC没有能力增长,这就进入了深度饱和区,即IV区。此时的VCE称为GTR的饱和压降,用VCES表示,低于GTOVMOSFETV区是击穿区,

VCE增加到一定值时,即使IB不增加,IC也会增加。此时,VCEGTR的第一个击穿电压。如果VCE继续增加,IC也会增加。由于GTR具有负阻特性,当结温升高时,IC变大。由于整个芯片的导通不可能绝对均匀,大IC会产生集中热点,导致雪崩击穿和IC浪涌。这时候,即使降低VCE也无济于事。高速增长的热量无法消散,GTR会在短时间内(几微秒甚至几纳秒)永远烧毁。这是GTR的二次细分。这是GTR最致命的弱点,也是制约GTR发展和进一步应用的最重要原因之一。

电力晶体管GTR主要用作功率开关。因此,要求有足够的容量(高电压、大电流)、适当的增益、较高的运行速度和较低的功率损耗。但是,由于功率晶体管功率损耗大,工作电流大,存在基区注入效应大、基区膨胀效应、发射极电流边缘效应等特点和问题。

基区大注入效应是指当基区的少数载流子浓度达到或超过掺杂浓度时,器件的注入效率降低,少数载流子扩散系数增大,体内少数载流子寿命降低,造成严重影响GTR电流增益的现象。

基区扩大效应是指在大电流条件下扩大有效基区的效应。器件工作在低电流状态时集电极结的宽度主要由基极掺杂浓度决定,因此其增益β值是固定的;但在大电流条件下,集电极是由于基区少数载流子大量增加导致结宽缩小,从而扩大了有效基区。基区的扩大导致注入效率降低,增益β降低,特征频率降低。

发射极电流捆绑效应也称为基极电阻自偏置效应,它是在大多数电流条件下,由于基极的横向压降导致发射极电流分布不均匀而引起的。在这种情况下,电流分布更多地集中在靠近基极的发射极外围,造成电流局部集中,进而导致局部过热。因此,为了减弱上述三种物理效应的影响,必须在结构上采取适当的措施,以确保适合大功率应用的需要。

以上就是电力晶体管的一些值得大家学习的详细资料解析,希望在大家刚接触的过程中,能够给大家一定的帮助,如果有问题,也可以和小编一起探讨。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭