当前位置:首页 > 技术学院 > 技术前线
[导读]完整方案分享——如何利用精密ADC AD7124-8进行热电偶采集

最近在查找ADI测量温度方案,发现AD7124-8很适合温度测量,于是申请了AD7124-8的样品,设计一款5通道K型热电偶测温电路。

电路设计参考了UG-856 EVAL-AD7124-8SDZ User Guide上的原理图,将AD7124-8的模拟通道连接到接线端子上,热电偶测量方案也参考UG-856应用,冷端使用一个3线PT100补偿,MCU采用ADI ARM CORTEX-M3处理器ADUCM360,调试时使用串口打印输出数据,为了设计通用性以及后续软件移植,设计时将ADC部分和MCU部分分成两个PCB。原理图设计图纸大致如下:


ad7124程序

图1 模拟通道滤波电路


ad7124程序

图2 AD7124-8电路


ad7124程序

图3 电源以及外部REF电路

原理图设计完了,就准备PCB layout,layout参考UG-856上的设计,按照4层板设计。


ad7124程序

图4 顶层丝印图


ad7124程序

图5 顶层走线图


ad7124程序

图6 GND层


ad7124程序

图7 电源层


ad7124程序

图8 底层


ad7124程序

图9 底层丝印图

PCB layout完成后就联系板厂加工,期间准备物料,感谢ADI支持,很多样品都申请到样品了。

硬件部分设计完成就开始考虑软件设计了,ADI网站上提供参考代码,在网站上下载了源代码,看了一遍,感觉还不错,值得借鉴,不过不是在ADUCM360上开发的程序,需要将其移植到ADUMC360上

移植部分很简单,只需要完成3个填空题

int8_t SPI_Init(ADI_SPI_TypeDef *pSPI,uint32_t u32Baud);

int8_t SPI_Read(ADI_SPI_TypeDef *pSPI,uint8_t *pBuffer,int32_t i32Len);

int8_t SPI_Write(ADI_SPI_TypeDef *pSPI,uint8_t *pBuffer,int32_t s32Len);

其中SPI_Init完成SPI的初始化,包括SPI号,以及波特率

SPI_Read实现SPI读数据i32Len数据到pBuffer中

SPI_Write则实现SPI则将pBuffer中长度为s32Len数据再MOSI上发送出去

移植完驱动后续就是验证是否移植是否正确了,下载的源代码AD7124.C中也提供了方法。在int32_t AD7124_Setup(ad7124_device *device, int slave_select,ad7124_st_reg *regs)中实现了AD7124-8配置寄存器以及查询寄存器操作,验证是否移植正确,就是将配置好的寄存器重新读出来进行比对了。寄存器的配置在ad7124_st_reg ad7124_regs[]初始化时已经实现,可以根据项目需求自行配置。配置值和读出结果一致也就表示一致正确了。

按照一路K型热电偶配置如下,AIN0,AIN1 K型热电偶差分输入通道,采用内部2.5VREF, AIN12,AIN13 PT100差分通道,AIN10,AIN11 500uA恒流源输出,采用REF1

ad7124_st_reg ad7124_regs[] =

{

{0x00, 0x00, 1, 2}, /* AD7124_Status */

//REF_EN

{0x01, 0x0100, 2, 1}, /* AD7124_ADC_Control */

{0x02, 0x0000, 3, 2}, /* AD7124_Data */

//IOUT0 -> AIN11, IOUT1 -> AIN10, IOUT0 -> 500uA, IOUT1 -> 500uA

{0x03, 0x24ab, 3, 1}, /* AD7124_IOCon1 */

//VBIAS0

{0x04, 0x0001, 2, 1}, /* AD7124_IOCon2 */

{0x05, 0x02, 1, 2}, /* AD7124_ID */

{0x06, 0x0000, 3, 2}, /* AD7124_Error */

{0x07, 0x0044, 3, 1}, /* AD7124_Error_En */

{0x08, 0x00, 1, 2}, /* AD7124_Mclk_Count */

//AIN0->AINP,AIN1->AINM

{0x09, 0x8001, 2, 1}, /* AD7124_Channel_0 */

// {0x09, 0x818d, 2, 1}, /* AD7124_Channel_0 */

//AIN12->AINP,AIN13->AINM

{0x0A, 0x918d, 2, 1}, /* AD7124_Channel_1 */

//{0x0A, 0x8001, 2, 1}, /* AD7124_Channel_1 */

{0x0B, 0x0001, 2, 1}, /* AD7124_Channel_2 */

{0x0C, 0x0001, 2, 1}, /* AD7124_Channel_3 */

{0x0D, 0x0001, 2, 1}, /* AD7124_Channel_4 */

{0x0E, 0x0001, 2, 1}, /* AD7124_Channel_5 */

{0x0F, 0x0001, 2, 1}, /* AD7124_Channel_6 */

{0x10, 0x0001, 2, 1}, /* AD7124_Channel_7 */

{0x11, 0x0001, 2, 1}, /* AD7124_Channel_8 */

{0x12, 0x0001, 2, 1}, /* AD7124_Channel_9 */

{0x13, 0x0001, 2, 1}, /* AD7124_Channel_10 */

{0x14, 0x0001, 2, 1}, /* AD7124_Channel_11 */

{0x15, 0x0001, 2, 1}, /* AD7124_Channel_12 */

{0x16, 0x0001, 2, 1}, /* AD7124_Channel_13 */

{0x17, 0x0001, 2, 1}, /* AD7124_Channel_14 */

{0x18, 0x0001, 2, 1}, /* AD7124_Channel_15 */

//REFBUF,AINBUF ON,REF_SEL=REFIN2,PGA=32

{0x19, 0x09e5, 2, 1}, /* AD7124_Config_0 */

//REFBUF,AINBUF ON,REF_SEL=REFIN2,PGA=16

//{0x1A, 0x09e5, 2, 1}, /* AD7124_Config_1 */

{0x1A, 0x01ec, 2, 1}, /* AD7124_Config_2 */

{0x1B, 0x0860, 2, 1}, /* AD7124_Config_2 */

{0x1C, 0x0860, 2, 1}, /* AD7124_Config_3 */

{0x1D, 0x0860, 2, 1}, /* AD7124_Config_4 */

{0x1E, 0x0860, 2, 1}, /* AD7124_Config_5 */

{0x1F, 0x0860, 2, 1}, /* AD7124_Config_6 */

{0x20, 0x0860, 2, 1}, /* AD7124_Config_7 */

{0x21, 0x060180, 3, 1}, /* AD7124_Filter_0 */

{0x22, 0x060180, 3, 1}, /* AD7124_Filter_1 */

{0x23, 0x060180, 3, 1}, /* AD7124_Filter_2 */

{0x24, 0x060180, 3, 1}, /* AD7124_Filter_3 */

{0x25, 0x060180, 3, 1}, /* AD7124_Filter_4 */

{0x26, 0x060180, 3, 1}, /* AD7124_Filter_5 */

{0x27, 0x060180, 3, 1}, /* AD7124_Filter_6 */

{0x28, 0x060180, 3, 1}, /* AD7124_Filter_7 */

{0x29, 0x800000, 3, 1}, /* AD7124_Offset_0 */

{0x2A, 0x800000, 3, 1}, /* AD7124_Offset_1 */

{0x2B, 0x800000, 3, 1}, /* AD7124_Offset_2 */

{0x2C, 0x800000, 3, 1}, /* AD7124_Offset_3 */

{0x2D, 0x800000, 3, 1}, /* AD7124_Offset_4 */

{0x2E, 0x800000, 3, 1}, /* AD7124_Offset_5 */

{0x2F, 0x800000, 3, 1}, /* AD7124_Offset_6 */

{0x30, 0x800000, 3, 1}, /* AD7124_Offset_7 */

{0x31, 0x500000, 3, 1}, /* AD7124_Gain_0 */

{0x32, 0x500000, 3, 1}, /* AD7124_Gain_1 */

{0x33, 0x500000, 3, 1}, /* AD7124_Gain_2 */

{0x34, 0x500000, 3, 1}, /* AD7124_Gain_3 */

{0x35, 0x500000, 3, 1}, /* AD7124_Gain_4 */

{0x36, 0x500000, 3, 1}, /* AD7124_Gain_5 */

{0x37, 0x500000, 3, 1}, /* AD7124_Gain_6 */

{0x38, 0x500000, 3, 1}, /* AD7124_Gain_7 */

};

配置完成后,就开始实现PT100以及热电偶电压采集了,AD7124-8可以通过使能多个通道寄存器,实现ADC多通道自动切换,注意通道寄存器中的SETUP配置,这是通道寄存器与配置寄存器相关联的地方,通过3bit Setup位以及16个通道寄存器可以组合出16*8= 108种组合配置,数据手册的描述比较难理解


ad7124程序ad7124程序


ad7124程序

配置完成后,就只需要查询AD7124-8状态寄存器数据是否准备好以及对应的通道数,数据如果准备好,就可以读取对应通道的数据,实现代码如下:

if( AD7124_WaitForConvReady(&g_ad7124dev,100) >= 0 )

{

u8Ch = AD7124_STATUS_REG_CH_ACTIVE(ad7124_regs[AD7124_Status].value);

AD7124_ReadData(&g_ad7124dev, &s32AdCode[u8Ch]);

switch(u8Ch)

{

case 0:

fVolVal = 2500.0*(s32AdCode[u8Ch] - 0x800000)/(32.0*0x800000);

fK_mv = Temp2K_mv(fTempVal);

//fVolVal += fK_mv;

fK_TempVal = CalculateKTemp(fVolVal + fK_mv);

printf("Thermocouple Temperature: %5.3f C \r\n ",fK_TempVal );

break;

case 1:

//AD7124_ReadData(&g_ad7124dev, &s32AdCode[0]);

fResVal = s32AdCode[u8Ch]*250.0/0xffffff;

fTempVal = CalculateRTDTemp(fResVal);

printf("RTD Temperature: %5.3f C \r\n ",fTempVal );

break;

}

}

数据寄存器数据读出来之后就剩下数据处理了,热电偶的常用处理方式是冷端温度转换为对应的热电偶电压,热电偶热端电压+冷端电压值得到的电压值在转换成热电偶电压,按照这种算法实现热电偶测温。软硬件调试已经完成,需要原理图和源代码的朋友可以发邮件联系我leif.dong@avnet.com


ad7124程序

附件是该方案的详细资料,软、硬件都有哦~

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭