[导读]▼点击下方名片,关注公众号▼555定时器芯片由于使用方便灵活,应用非常广泛。常用在波形的产生与变化、测量与控制等许多领域。家用电器、电子玩具中都很常见,是非常经典的一款芯片。究竟有多经典,甚至可以出它的手办模型。由于广受市场欢迎,许多芯片公司都各自推出了555定时器芯片。尽管产品...
555定时器芯片由于使用方便灵活,应用非常广泛。常用在波形的产生与变化、测量与控制等许多领域。
家用电器、电子玩具中都很常见,是非常经典的一款芯片。
究竟有多经典,甚至可以出它的手办模型。
由于广受市场欢迎,许多芯片公司都各自推出了555定时器芯片。
尽管产品型号繁多,芯片内部电路的实现不尽相同,但他们最终实现的功能和外部引脚的排列完全相同。
网上有很多555定时器做的应用电路,但是讲解都非常粗陋简略,可读性很差,比如这样的文章:
下面就以其中一款555定时器芯片为例,分析芯片的内部电路,讲解其工作原理。
只要了解了芯片的工作原理,看各种芯片的应用电路时就会得心应手。
目录:
一、芯片引脚定义
二、芯片内部结构
三、等效图组成说明
四、等效图各功能区分析:分压电路 电压比较器
五、等效图各功能区分析:RS触发器
六、等效图各功能区分析:电压比较器 RS触发器
七、等效图各功能区分析:555定时器芯片的PIN5(第5脚)
八、等效图各功能区分析:555定时器芯片的PIN3(第3脚)
九、等效图各功能区分析:555定时器芯片的PIN4(第4脚)、PIN7(第7脚)
十、最后
一、芯片引脚定义
555定时器有8个脚,各脚定义如下。
各脚的详细定义见下表。(英文名称均为缩写)
二、芯片内部结构
打开555定时器的数据手册,可以看到芯片的内部电路。
用不同颜色划分一下电路的功能区块。
包括:
-
Threshold Comparator(门限比较器,就是个电压比较器)
-
Trigger Comparator(触发比较器,就是个电压比较器)
-
Voltage Divider(分压电路)
-
Flip-Flop(触发器,这里也叫RS触发器、复位/置位触发器、SR锁存器)
-
Output(输出电路)
-
Discharge(放电电路)
看起来有点复杂,等效简化为下图后就一目了然啦。
三、等效图组成说明
C1和C2就是两个电压比较器,即上文提到过的Threshold Comparator(门限比较器)和Trigger Comparator(触发比较器)。
Flip-Flop(触发器),这里又叫RS触发器。
输出脚有个反相器。能将输入的低电平反相为高电平输出,同样能将输入的高电平反相为低电平输出。(高电平可以简单理解为电压接近电源电压Vcc,低电平可以简单理解为电压接近0)
Reset(复位)和Discharge(放电):
PIN4为输入引脚,为低电平时整个芯片处于复位状态,芯片不可用。
PIN7是放电引脚,用来给外部电路放电。
Voltage Divider(分压电路)。
四、等效图各功能区分析:分压电路 电压比较器
3个5kΩ电阻将Vcc电压三等分。
2/3Vcc输入到电压比较器C1的反向输入端。
1/3Vcc输入到电压比较器C2的正向输入端。
Vcc电压的范围,需要查看芯片的数据手册,这里的数据手册标示为5V到15V。
假设Vcc为9V时,2/3Vcc = 6V,1/3Vcc = 3V。
对于电压比较器来说,当"正向输入端的V1" > "反向输入端的V2”时,输出Vout = High高电平。
当"正向输入端的V1" < "反向输入端的V2”时,输出Vout = Low低电平。
所以当555定时器第6脚为7V时,电压比较器C1的"同相输入端(7V)" > "反向输入端(6V)",电压比较器C1输出HIGH高电平。
当555定时器第6脚为0V时,电压比较器C1的"同相输入端(0V)" < "反向输入端(6V)",电压比较器C1输出LOW低电平。
五、等效图各功能区分析:RS触发器
电压比较器C1、C2将电压比较的结果输出给RS触发器。
RS触发器有两个输入脚,分别为R和S:
R代表Reset(复位);
S代表Set(置位)。
RS触发器两个输出脚,分别为Q和非Q(“非Q”的符号是在Q的上面有一个横杠):Q和非Q的电平,在一般情况下互为相反,即Q为高电平,那么非Q为低电平。
其内部是由两个“或非门”组成。
在下面我们将看到在RS触发器定义里的三个特性。
特性1:S、R为高电平有效。即S为高电平,就会把Q置位为1;R为高电平,就会把Q复位为0。
特性2:S、R同时为低电平时,Q和非Q将保持原来的状态不变。
特性3:S和R不能同时为高电平。这是RS触发器的定义规定的,但实际在555定时器的应用里,是可能出现其内部RS触发器的S和R同时为高电平的这种情况,稍后将展开讨论。
来看RS触发器的输入输出关系:
1、当S、R分别输入为HIGH、LOW时,Q被置位为HIGH,与之对应非Q为LOW。(特性1)
2、此时将S、R分别改为输入LOW、LOW时,Q、非Q将保持原来的状态,即仍为HIGH、LOW。(特性2)
3、当S、R分别输入为LOW、HIGH时,Q被复位为LOW,与之对应非Q为HIGH。(特性1)
4、此时将S、R分别改为输入LOW、LOW时,Q、非Q将保持原来的状态,即仍为LOW、HIGH。(特性2)
5、当S、R分别输入为HIGH、HIGH时,Q和非Q均为LOW。(见特性3,此为RS触发器定义里禁止出现的状态,可以看出此时Q和非Q的状态也不是相反的了,变成了相同的LOW)
为什么在RS触发器的定义里,要禁止出现这种状态呢?因为S、R同时为HIGH时,后续如果S、R是都变成LOW,那么由于S、R在都变成LOW的过程中,时间先后上总有细微的误差,S、R可能先变成LOW、HIGH,也可能先变成HIGH、LOW,这导致Q和非Q的状态不能确定。
当S比R先变成LOW时,最终Q和非Q分别为LOW、HIGH:
当R比S先变成LOW时,最终Q和非Q分别为HIGH、LOW:
所以在分析555定时器内部电路时,要谨记RS触发器的S、R为HIGH、HIGH时,避免下一步就变为LOW、LOW。
另外,由于555定时器里面只使用了非Q,没有使用Q,所以我们只看非Q就好了。
六、等效图各功能区分析:电压比较器 RS触发器
1、PIN6、PIN2分别输入0V、0V时:
①、电压比较器C1比较两个输入端的电压,最后输出Low到RS触发器的R端。
②、电压比较器C2比较两个输入端的电压,最后输出High到RS触发器的S端。
③、R、S分别为Low、High,RS触发器最终在非Q端输出Low。
2、PIN6、PIN2分别输入0V、9V时:
①、电压比较器C1比较两个输入端的电压,最后输出Low到RS触发器的R端。
②、电压比较器C2比较两个输入端的电压,最后输出Low到RS触发器的S端。
③、R、S分别为Low、Low,RS触发器最终在非Q端输出Low,即保持原来的状态。
3、PIN6、PIN2分别输入9V、9V时:
①、电压比较器C1比较两个输入端的电压,最后输出High到RS触发器的R端。
②、电压比较器C2比较两个输入端的电压,最后输出Low到RS触发器的S端。
③、R、S分别为High、Low,RS触发器最终在非Q端输出High。
4、PIN6、PIN2分别输入9V、0V时:
①、电压比较器C1比较两个输入端的电压,最后输出High到RS触发器的R端。
②、电压比较器C2比较两个输入端的电压,最后输出High到RS触发器的S端。
③、R、S分别为High、High,RS触发器最终在非Q端输出Low。(如前所述,这里要注意避免R、S在下一步是变为LOW、LOW)
七、等效图各功能区分析:555定时器芯片的PIN5(第5脚)
555定时器的PIN5是控制阈值电压脚。
PIN5接到电压比较器C1的反向输入端,可以让人直接控制电压比较器C1的阈值电压。
八、等效图各功能区分析:555定时器芯片的PIN3(第3脚)
555定时器的PIN3是芯片的输出脚。
PIN3和RS触发器的非Q之间有1个反相器。
当非Q输出HIGH时,PIN3输出LOW,两者为反相关系。
九、等效图各功能区分析:555定时器芯片的PIN4(第4脚)、PIN7(第7脚)
555定时器的PIN4是芯片的复位脚。当PIN4被接到低电平时,整个555定时器芯片被复位,PIN3将输出LOW。(图中三极管Q2的发射限流电阻未画出)
555定时器的PIN7是芯片的放电引脚。对外放电时,内部三极管Q1导通。(图中三极管Q1的基极限流电阻未画出)
十、最后
555定时器芯片的输入输出特性功能表总结如下,分为5种状态,后续在分析555定时器的应用电路时可借助该表进行分析:
注:在“状态5”时,下一步不能变成“状态3”,否则将导致输出结果不能确定。
至此,555定时器芯片内部电路的分析到此完毕,是不是感觉有点意犹未尽?
那是因为本文仅仅对芯片内部的电路做了分析,没有对芯片的应用电路做实例分析。所谓的空有内功心法,但是没有练过一招一式。
后续看到各种不同厂家生产的555定时器芯片所做成的应用电路时,可以参考本文讲解的芯片工作原理,多看多分析,积累越来越多的招式。
最后,关于电路的学习,希望大家,Enjoy!
本文有点长,建议收藏,随时查阅。
End
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
早前,就有消息称台积电或将在9月份正式量产3nm工艺,预计于第三季下旬投片量将会有一个大幅度的拉升,而第四季度的投片量会达到上千的水准并且正式进入量产阶段。
关键字:
台积电
三星
芯片
半导体
正常情况下,通过SWD在线调试时,一旦芯片进入低功耗模式(Stop或者Standby),调试就会断开。原因是进入Stop或者Standby模式后,内核时钟就停止了。如果想在调试低功耗代码时还可以正常通过调试接口debug...
关键字:
SWD
芯片
低功耗模式
全球半导体短缺让所有微控制器使用者的生活都变得难熬了起来,如今的订货周期有时会长达好几年。不过,售价4美元的树莓派Pico是一个亮点,它是一个以新型RP2040芯片为基础的微控制器。RP2040不仅有强大的计算能力,还没...
关键字:
半导体
微控制器
芯片
网关、机顶盒、HDMI设备和USB电视棒得到SL3000的支持 印度班加罗尔2022年10月20日 /美通社/ -- Tejas Networks (孟买证券交易所代码:5...
关键字:
ATSC
芯片
AN
ABS
10月3日,三星电子在美国加州硅谷举办“三星晶圆代工论坛&SAFE论坛”。论坛上三星芯片代工部门表示,将于2025年开始生产2nm制程工艺芯片,然后在2027年开始生产1.4nm工艺芯片。据了解,此前台积电也曾规划在20...
关键字:
三星
1.4nm
芯片
消息称台积电将于今年9月开始对3纳米芯片进行量产。这下,三星要坐不住了!虽然三星在6月30日称自己已经实现了3纳米的量产。
关键字:
华为
3nm
芯片
提到台积电,相信大家都不陌生,作为全球顶尖的晶圆代工机构。仅台积电、三星两家晶圆代工厂的市场份额,就占据了全球半导体市场的70%左右。
关键字:
3nm
芯片
三星
英国广播公司《科学焦点杂志》网站5月22日刊登了题为《什么是摩尔定律?如今是否仍然适用?》的文章,摘要如下:
关键字:
摩尔定律
半导体
芯片
据业内消息,近日高通公司的CEO Cristiano·Amon在风投会议上表示,大家在关注经济增长时也开始关心芯片,在这个数字化转型和数字经济成为重要部分的时代,芯片对于提高效率是必须的,芯片的重要性正在被普遍接受,未来...
关键字:
高通公司
芯片
作为全球豪华汽车巨头,宝马在未来的电动汽车上也开始加大投资,这一次他们是多方下注,英国牛津的工厂还是战略核心,日前又透露说在中国投资上百亿生产电动车,今晚宝马公司又宣布在美国投资17亿美元,约合人民币123亿元。
关键字:
宝马
芯片
供应商
周四美股交易时段,受到“台积电预期明年半导体行业可能衰退”的消息影响,包括英伟达、英特尔、阿斯麦等头部公司均以大跌开盘,但在随后两个小时内纷纷暴力拉涨,多家千亿美元市值的巨头较开盘低点向上涨幅竟能达到10%。
关键字:
台积电
半导体
芯片
在需求不振和出口受限等多重因素的影响下,全球半导体厂商正在经历行业低迷期。主要芯片厂商和设备供应商今年以来股价集体腰斩。
关键字:
芯片
厂商
半导体
在半导体制造中,《国际器件和系统路线图》将5nm工艺定义为继7nm节点之后的MOSFET 技术节点。截至2019年,三星电子和台积电已开始5nm节点的有限风险生产,并计划在2020年开始批量生产。
关键字:
芯片
华为
半导体
北京时间10月18日消息,富士康周二表示,希望有一天能够为特斯拉公司生产汽车。眼下,富士康正在加大电动汽车的制造力度,以实现业务多元化。
关键字:
富士康
芯片
半导体
特斯拉
近日,中国工程院院士倪光南在数字世界专刊撰文指出,一直以来,我国芯片产业在“主流 CPU”架构上受制于人,在数字经济时代,建议我国积极抓住时代机遇,聚焦开源RISC-V架构,以全球视野积极谋划我国芯片产业发展。
关键字:
倪光南
RISC-V
半导体
芯片
新能源汽车市场在2022年有望达到600万辆规模,为芯片产业带来较大的发展机遇。2022年,我国芯片供应比去年有所缓解,但仍紧张。中期来看,部分类别芯片存在较大结构性短缺风险,预计2022年芯片产能缺口仍难以弥补。这两年...
关键字:
新能源
汽车
芯片
汽车芯片和半导体领域要深度地融合,不仅仅是简单的供需关系,应该是合作关系,把汽车芯片导入到整车厂的应用。为缓解汽车产业“缺芯”,国内汽车芯片产业正探索越来越多的方式完善生态。为了促进汽车半导体产业的快速发展,弥补国内相关...
关键字:
智能化
汽车
芯片
汽车“缺芯”之下,国产芯片的未来是一片蓝海。在过去很长一段时间内,“缺芯”“少魂”是我国汽车企业的短板弱项,车规级芯片、操作系统的自主可控程度不高。其中,我国车规级芯片自给率小于5%,且多以低端产品为主,关键芯片均受制于...
关键字:
智能化
汽车
芯片
之前,美国运营商AT&T曾宣布,今年年底推出5G网络,而随着时间的推移,2019年会有越来越多的国家和地区商用5G网络,在这样的大环境下,芯片厂商提前布局也就是情理之中的事情了。
关键字:
运营商
5G网络
芯片
日本车用MCU大厂瑞萨电子发布公告称,该公司将于8月31日完全关闭滋贺工厂,并将土地转让给日本大坂的ARK不动产株式会社。瑞萨电子曾在2018年6月宣布,滋贺工厂将在大约两到三年内关闭,该工厂的硅生产线已于2021年3月...
关键字:
MCU
ARK
芯片