当前位置:首页 > 消费电子 > 消费电子
[导读]对CCD相机成像分辨率自动测试方法进行了研究,测试方案中改进设计了照相分辨率靶标,开展了数据分析处理,通过软硬件结合实现了对CCD相机整机分辨率的自动测试,结果数据经过专业测试比对确认有效。实验结果表明,方法客观、准确,能够避免以往人工测试分辨率带来的主观因素影响,具有很高的实用性。

0 引言

目前传输型CCD相机已取代传统胶片相机成为主流摄影设备,然而各生产厂家对相机成像分辨率这一核心指标的测量还基本采用基于人工判读的测试方法。

人工判读测试分辨率,对胶片相机而言简单、方便,但由于不同人眼的视觉灵敏度不同以及检测条件的差异,因此难免引入不同程度的主观误差,时常难以达成统一的测量结果,从而影响了测试精度。

对于CCD 相机,可利用其对特定目标生成的数字影像,通过实施高效的数据分析处理技术,自动实现对相机分辨率量化测试,从而客观判定相机成像质量。

1 理论分析

影响CCD相机成像分辨率的因素主要包括:光学系统、CCD器件及相应电路处理系统等。其中光学系统可利用干涉检测法或传递函数等对其像质进行测试,从而客观地获取相应的分辨率量化结果;CCD器件本身的理论极限分辨率可以根据其像元尺寸直接计算求得;对于电路处理系统,在理想情况下其对图像分辨率测试方面的影响可忽略不计,在此暂不予以考虑。综合上述因素,CCD 相机整机理想情况下的分辨率N 可由下式计算求得:

 

 

式中:N光为光学系统分辨率;NCCD 为CCD器件的分辨率。

虽然上述计算可以估算出CCD相机整机的理论分辨率,但由于存在整机装配误差、系统控制误差以及依靠人工判读测试带来的主观不确定性,经常难以准确反映相机最终成像水平,因此需要在CCD 相机整机检测时对分辨率指标实施精确量化测试,从而客观综合反映CCD相机整机成像质量。

为此,本文提出基于光栅目标影像对比度分析的分辨率自动测试方法。该方法是将CCD相机整体作为光能量信息传递系统,根据系统传递函数测试原理,按照正弦级数展开的定义,将矩形分布函数展开成不同频率正弦分布的叠加,则对比度传递函数可表示为:

 

 

由于光电探测器将光通量转换为电信号,利用电子学方法可将所有高次谐波成分全部滤掉,这样所得到的传递函数关系式变为:

 

 

M 和M0 分别为输出对比度(又称调制度)和输入对比度。设目标影像最大光强为Imax,最小光强为Imin,则对比度定义为:

 

 

在CCD 相机实际成像过程中,除目标影像外还会有背景亮度产生的光强Ib,此时对比度定义修正为:

 

 

在实验室条件下,所采用的靶标为高对比度,可定义相应的M0 =1.这样对CCD 相机整机分辨率的测量原理转化为,对分辨率靶标光栅图案影像进行对比度分析计算,通过与确认的最小可分辨基准阈值进行比较,从而自动确定相机达到的分辨级别,经系统换算快速得出分辨率量化结果。

2 测试系统组成及测试过程

CCD相机分辨率测试系统组成如图1所示,主要包括标准光源、光栅靶标、平行光管、图像采集卡、图像存储器、工控机以及数据分析处理软件。

 

 

系统测试前要确认各设备的初始位置,靶标要准确标定在平行光管的焦面处,平行光管的出口对应到相机入口处,平行光管的光轴与相机光学系统的光轴要共轴,同时要保证CCD 像元与靶标条纹的中心线对准。

测试时,开启积分球,使其均匀照亮矩形光栅靶标,启动相机拍照,靶标经平行光管与相机光学系统成像在焦面CCD上,使光信号转换为电信号,再经图像采集卡实时采集生成的图像数据流,在工控机的控制下按相应格式存入图像存储器。图像数据综合分析处理软件,可以直接显示数据格式图像,还可以对整个影像或选取局部区域进行放大、缩小显示,更主要的是可实现对随意选取的图像目标影像区域进行分辨率判别计算。[!--empirenews.page--]

对分辨率的自动测试,首先要确定可分辨的对比度基准。目前常用的分辨率判据主要包括瑞利判据和道斯判据,根据瑞利判据两衍射斑之间光强的对比度小于15%时,人眼对这两点便不可分辨;而按照道斯判据,两衍射斑之间光强的对比度在1.55%时,为人眼的分辨极限。本文为合理确定测试判据,搜集了大量不同型号相机在不同条件下进行的照相试验图像,其中包括数十张经判读专家审查达到某一分辨率水平的图像数据。通过对所获取的图像数据进行对比度计算分析,表明按照瑞利判据判定相机极限分辨率的条件过于宽松,而依据道斯判据又过于严格,经过平均考虑对比度测试结果,最后以5%作为实际可行的极限分辨的基准对比度。

分辨率测试的主要环节是求得靶标影像对比度。

为获得良好的靶标成像效果以及便于理论分析计算,对本系统测试用靶标突破了传统靶标的制作模式,根据需要确定其明暗条纹按单一方向逐级渐变的形式制作,每一级整体宽度及内部条纹宽度固定,而随着级数增加条纹宽度逐级变窄。测试时,CCD相机对靶标成像后,以每一级明暗条纹影像中一定范围的像素点作为一个图像样本,每个样本计算时选取的像素点数定为200×100,则通过样本对比度分析判断,进而转换计算得出CCD相机分辨率的过程如下:

(1)通过数值判断,求得样本区域内最大灰度值Imax和最小灰度值Imin ,进而求得二者的均值I均作为明暗条纹的分界值;

(2)以I均为界值,逐行判断为亮条纹或暗条纹,进而分别求出明暗条纹区域内灰度均值 Imax 和 Imin ;(3)利用靶标影像区域外的像素点平均灰度值计算取得背景强度Ib ;

(4)将 Imax 、Imin 及Ib 代入公式(6),计算求得此样本的整体对比度;

(5)通过将样本对比度与基准对比度比较,判断此样本是否可分辨;

(6)经过逐级判断,直至确认图像样本达到的极限分辨水平,最后经系统折算求出相机所达到的整机分辨率。

在人工判读成像分辨率时要求靶面上每个单元中不同方向的条纹均能分辨,才能确认分辨这个单元,因此在自动测试时需要按现行通用标准将靶标调整两个方向分别成像,取其中计算所得的最低分辨率值作为最终的测试结果。

3 测试结果分析

针对某型CCD 相机,按人工判读测试和自动测试两种方法,分别利用标准靶标和渐变光栅靶标取得了相应的分辨率测试数据,两种测试方法取得的分辨率结果见表1,表2.

 

 

通过对表1,表2比较分析可知,两种测试方法的结果相差不大,误差不超过一组分辨单元,属于可接受的误差范围。

4 结论

本文提出的CCD 相机分辨率自动测试方法,实现了对相机整机核心技术指标的客观评价,避免了人为因素的影响。而且,该方法可适应于各种CCD相机,对应不同类型的相机只要将图像数据采集接口和通信协议进行相应改造,即可方便快捷完成测试,给出分辨率结果,这对于做好批量生产CCD 相机的质量测试具有很高的实用性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭