当前位置:首页 > > 充电吧
[导读]为什么要测试ROM和RAM,怎么测试呢?普遍的看法是

                                                                       
                                    
    在硬件系统出厂前要进行产品测试;在嵌入式系统工作之前,一般也要进行自检,其中ROMRAM检测必不可少,可是有不少人对于测试目的、原因和方法存在错误理解。

    为什么要测试ROM和RAM,怎么测试呢?普遍的看法是:由于担心ROM和RAM芯片损坏,在出厂和使用前应该校验这两种芯片的好坏。测试RAM的方法是写读各个内存单元,检查是否能够正确写入;测试ROM的方法是累加各存储单元数值并与校验和比较。这种认识不能说错,但有些肤浅,照此编出的测试程序不完备。一般来说,ROM和RAM芯片本身不大会被损坏,用到次品的概率也比较小,真正出问题的,大都是其他硬件部分,因此,测试ROM和RAM往往是醉翁之意不在酒。
   
    ROM测试
    测试ROM的真正目的是保证程序完整性。
    嵌入式软件和启动代码存放在ROM里,不能保证长期稳定可靠,因为硬件注定是不可靠的。以flash ROM为例,它会由于以下两种主要原因导致程序挥发:

    1。受到辐射。本身工作在辐射环境里/运输过程中受到辐射(如过海关时被X光机检查)。
    2。长时间存放导致存储失效,某些0、1位自行翻转。
    无论如何,在硬件上存放的程序都是不可靠的。如果完全不能运行,那到也不会造成太大的损失。怕就怕程序可以运行,但某些关键数据/关键代码段被破坏,引发致命错误。为此,必须在程序正常工作前,在软件层面上保证所运行的程序100%没有被破坏,保证现在要运行的程序就是当初写入的。

    保证程序完整性的方法很多,例如对全部程序进行CRC校验(-16和-32)/累加和校验(移位累加),只要能在数学上确保出错概率极低,工程上就可以认为程序完整。

    程序完整性测试通过,捎带着也就证明了ROM没有被损坏。即测试ROM是否损坏只是测试的副产品,不是主要目的。
   
    RAM测试

    测试RAM的真正目的是保证硬件系统的可靠性。

    RAM真的是太不容易坏了,我至今还没有看见过一起因为RAM损坏导致的系统不正常现象。不过大部分问题却可以通过RAM测试反映出来。仔细想想,当硬件被生产出来/被插到背板上究竟会发生什么错误呢!是不是感到自己做的板子出问题的可能性更大!请考虑如下几点:
    1。生产工艺不过关,过孔打歪了,与临近信号线距离不满足线规甚至打在了线上。
    2。由于搭锡引起的信号线粘连。
    3。虚焊/漏焊引起的接触不良。
    4。不按规程操作,把手印儿印在了高频线上。
    5。板子脏了也不吹,覆盖了一层灰尘(内含金属微粒)。
    ......
    这些现象比较有趣,试举几例:
    1。地址线A0和A1粘连。读出XXX00、XXX01、XXX10三个字节的数据完全一样。
    2。数据线D0和D1粘连。D0和D1只要有一个为0,那么两条线都为0。
    3。接触不良。时好时坏。
    4。器件表面处理不干净,有助焊剂残留。低速访问正常,大负荷高速访问频繁死机。

    总之,我们做的板子在生产中和使用中都会有出错机会,所以出厂前必须测试,使用前必须自检。(当然如果你做的不是实际产品而是实验室样品的话,可以简化步骤。)

    如何测试RAM呢?写一个数然后读出来判断显然测不出所有问题,单个测试数据不易覆盖全部测试内容,更不用说定位错误原因了(RAM坏、地址/数据线粘连、接触不良)。好的测试应尽可能测出粘连、RAM坏、单板高频特性。

    我总结的方法是这样的:(如测试一个FFH字节的RAM)

    首先,测试地址线,
    1。'0'滑动,随机选择一个数如55、AA之类,依次写到FEH、FDH、FBH、F7H、EFH、DFH、BFH、7FH地址单元里去,把地址写成二进制数,可以看到比特0在地址总线上从低到高滑动,谓之'0'滑动。目的是测试这些地址线在依次变0时是否稳定正常。当每一根线由1变0,会产生下冲,如果下冲控制不好,在高频时会引起错误。单板上地址线不一定一样长,下冲也就不会完全一样,因此,每一根线都单独测一下下冲性能。

    2。'1'滑动,随机选择一个数如55、AA之类,依次写到1H、2H、4H、8H、10H、20H、40H、80H地址单元里去,把地址写成二进制数,可以看到比特1在地址总线上从低到高滑动,谓之'1'滑动。,目的是测试这些地址线在依次变1时是否稳定正常。当每一根线由0变1,会产生上冲,如果上冲控制不好,在高频时会引起错误。单板上地址线不一定一样长,上冲也就不会完全一样,因此,每一根线都单独测一下上冲性能。上冲和下冲是不同的指标,要分别测一下。

    3。"全0变全1",随机选择一个数如55、AA之类,写到FFH单元,再写到00H单元,然后写到FFH单元。把地址写成二进制数,可以看到地址线从全'0'变到全'1'。由信号处理理论知,在电压阶跃跳变时包含无限宽频谱,其中高频部分对外产生辐射,这些辐射信号是干扰源,对临近线路产生较大影响。地址线一般集束布线,同时跳变会引起最大干扰。地址线从全'0'变到全'1',干扰、上冲、扇出电流影响最大。

    4。"全1变全0",紧接上一步,随机选择一个数如55、AA之类,写到00H单元。把地址写成二进制数,可以看到地址线从全'1'变到全'0',产生最大下冲干扰。

    5。"粘连测试"。依次向不同地址单元写入不同数据并读出判断,如:1、2、3、4......此步骤捎带测试了RAM好坏。注意,千万别用相同数据测试,否则测不出粘连。

    6。可选"全0全1连续高速变化"。目的是模拟最恶劣情况(大扇出电流、强干扰、上/下冲)。

    然后,测试数据线,(原理与测试地址线相同,1、2两步顺带测试了数据线粘连)

    1。'0'滑动,向某一固定地址依次写入FEH、FDH、FBH、F7H、EFH、DFH、BFH、7FH并读出判断。
    2。'1'滑动,向某一固定地址依次写入1H、2H、4H、8H、10H、20H、40H、80H并读出判断。
    3。"全0变全1",所有单元置1(先清零再置1并读出判断)。
    4。"全1变全0",所有单元清零(清零并读出判断)。
    5。可选"全0全1连续高速变化"。向某一单元高速交替写入若干全'0'和全'1',最后以全'0'结束。

    至此,RAM测试完毕,同时全部存储单元清零。

    对于出厂检测程序,有较大发挥余地,如可以加入错误定位代码,自动指出错误原因和错误位置。
    每一块单板的高频特性都会因为生产工艺误差(制板、材料、焊接、组装等)和使用情况而各不相同。同一块板子的高频特性在不同情况下表现也不相同。

    综上所述,除了测试RAM好坏,大部分代码测的是单板硬件可靠性。

    如果不关心高频特性,用原来的测试方法就差不多了(如果测试数据没选好,可能测不出数据线粘连),但应该认识到,测试RAM的主要对象不是RAM本身的好坏,而是连接RAM的单板硬件和线路。
   
    以上是我实际工作经验的一些总结,写出来与大家交流,如有不对之处恳请指正!
   
源程序(伪代码)
//TEST ROM
TestROM()
{//用移位累加和校验
  sum=0;
  for(i=0;i    sum=sum+ram[i];
    sum=sum>>1;
  }
  if(sum==CHECKSUM) printf("ROM test OK! ");
  else printf("ROM test ERROR! ");
}

//TEST RAM
TestRAM()
{
  //地址线测试
  '0'滑动;
  '1'滑动;
  "全0变全1";
  "全1变全0";
  "粘连测试";
  可选"全0全1连续高速变化";
 
  //数据线测试
  '0'滑动;
  '1'滑动;
  "全0变全1";
  "全1变全0";
  可选"全0全1连续高速变化"
}
 
 参加讨论。。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭