• 为何产生 “接地错觉”?千万不要让接地迷惑了你

    在电气安全领域,“接地” 是保障设备稳定运行和人员安全的核心环节。然而在实际操作中,一种隐蔽的安全隐患 ——“接地错觉” 却频繁引发事故。所谓接地错觉,指的是操作人员主观认为电气系统已完成有效接地,实则接地回路存在缺陷,无法在故障时及时导走电流。这种认知与现实的偏差,往往成为电气火灾、触电事故的导火索。深入剖析其产生的根源,对于规避安全风险具有重要意义。

  • 在实际应用中,出现电机过载现象时为什么电流会迅速超出额定值?

    电机作为现代工业与日常生活中不可或缺的动力源,其稳定运行对于保障生产效率和设备安全至关重要。然而,在实际应用中,电机过载现象时有发生,不仅影响设备性能,还可能引发严重故障甚至安全事故。

  • 电动机自身因素是造成电流过高的重要因素介绍

    电动机自身因素是造成电流过高的重要因素之一。电动机绕组的断路或短路,接法错误,以及机械故障都会导致电流过高的问题。

    工业控制
    2025-10-23
    电动机
  • 光时域反射仪(OTDR)的核心原理介绍

    纤测试仪的核心原理,光时域反射仪(OTDR)- 通过发射激光脉冲进入光纤,分析反射/散射光信号的时间与强度,定位断点、弯曲或熔接损耗。

  • CCD或CMOS阵列中,为何光纤光谱仪越来越受欢迎?

    被光栅分离后的各波长光信号,会投射到线性CCD或CMOS阵列上,每个像素点对应一个波长段。探测器将光信号转换为电信号,并通过A/D转换器传送给主控电路处理,最终呈现在软件端的就是“光谱图”。

  • 如何解决交流干扰引起的开关量导通的问题?

    开关量作为工业控制和电子设备中的关键信号,其导通状态的稳定性直接决定系统可靠性。交流干扰之所以会导致开关量误导通,主要源于三个维度:一是电磁耦合干扰,周围高压交流线路、变频器等设备产生的强电磁场,通过空间辐射耦合到开关量信号线,形成感应电动势,当感应电压达到开关管导通阈值时,便会引发误动作;二是传导干扰,交流电源中的谐波成分的通过共用电源线侵入控制回路,干扰开关量驱动电路的正常工作;三是地电位差干扰,不同设备接地点位存在电位差,形成地环路电流,通过信号回路叠加到开关量信号上,破坏其逻辑电平稳定性。在工业现场、智能家居等复杂环境中,这类干扰尤为突出,可能导致设备误启动、数据传输错误等严重后果。

  • 电源适配器电路保护中压敏电阻的应用

    电源适配器作为电子设备的能量供给核心,其工作环境常面临电网浪涌、雷击感应、电压波动等多种风险,这些异常情况极易导致内部功率器件损坏,甚至引发设备故障或安全隐患。压敏电阻(Varistor)作为一种具有非线性伏安特性的过压保护元件,凭借响应速度快、通流能力强、成本低廉等优势,已成为电源适配器电路保护体系中的关键组件。本文将深入探讨压敏电阻的工作原理、在电源适配器中的具体应用场景、选型原则及实际应用中的技术要点,为相关设计与工程实践提供参考。

  • EMI 干扰对电路系统的潜在威胁

    电磁干扰(EMI)作为电路设计中的 “隐形杀手”,不仅会导致信号失真、性能下降,严重时还会引发系统崩溃,甚至干扰周边电子设备的正常运行。在消费电子、工业控制、汽车电子等领域,EMI 合规性已成为产品上市的必备条件。元件布局作为电路设计的基础环节,直接决定了电磁耦合路径的强弱,是控制 EMI 的关键突破口。科学的布局设计能够从源头削弱电磁辐射与传导干扰,相比后期添加屏蔽罩、滤波器等补救措施,更具成本优势和可靠性。

  • 压敏电阻与陶瓷气体放电管抗雷击浪涌电路分析

    在电力系统、通信设备及电子终端等领域,雷击产生的浪涌电压是造成设备损坏的主要诱因之一。雷击浪涌具有峰值高、上升沿陡、持续时间短的特点,其电压峰值可达到数千甚至上万伏,远超常规电子设备的耐压极限。压敏电阻(MOV)和陶瓷气体放电管(GDT)作为两类常用的浪涌保护器件,凭借各自独特的电气特性,在防雷电路中发挥着关键作用。本文将深入分析两类器件的工作原理,并结合典型应用电路,探讨其在抗雷击浪涌保护中的协同机制与设计要点。

  • 工业机器人关节润滑:脂润滑与油润滑的温升对比实验

    工业机器人关节的精密传动系统,润滑方式的选择直接影响设备寿命与运行效率。脂润滑与油润滑作为两大主流方案,其温升特性差异成为制约机器人性能的关键因素。本文通过实验室对比实验与真实场景验证,揭示两种润滑方式在高速运转、重载冲击及极端温度下的温升规律。

  • 多设备协同控制:PLC与机器人通过OPC UA的跨系统通信

    工业4.0,多设备协同控制已成为提升生产效率、降低运维成本的核心技术。其中,可编程逻辑控制器(PLC)与工业机器人通过OPC UA协议的跨系统通信,通过打破设备间数据孤岛,实现了生产流程的精准控制与动态优化。以某汽车总装车间为例,其12台工业机器人、8套视觉检测系统及3台AGV小车组成的协同单元,曾因通信延迟导致焊接精度偏差超标、物料错位率达3.7%。通过引入OPC UA协议与PLC-机器人通信架构,该车间将通信延迟从820ms压缩至48ms,设备综合效率(OEE)提升18%,单线产能突破52JPH。这一实践揭示了跨系统通信在工业场景中的关键价值。

  • 电机绝缘测试:介电强度试验与局部放电(PD)检测标准

    电机绝缘系统的可靠性直接决定了设备的运行安全与使用寿命。在高压、高频、宽温域等复杂工况下,绝缘材料可能因电场集中、机械应力或热老化产生微小缺陷,进而引发局部放电(PD)甚至绝缘击穿。介电强度试验与局部放电检测作为绝缘性能评估的核心手段,其标准化操作与数据解读对保障电机安全至关重要。

  • 电动缸背隙补偿,滚珠丝杠与行星滚柱丝杠的定位精度提升策略

    在数控机床、工业机器人及航空航天装备等高精度领域,电动缸的定位精度直接影响加工质量与设备稳定性。其中,背隙误差与丝杠传动精度是制约系统性能的核心因素。通过背隙补偿技术、滚珠丝杠优化及行星滚柱丝杠创新设计,可显著提升电动缸的动态响应与定位精度。

  • 磁悬浮轴承控制,主动磁悬浮与PID-FOC算法的振动抑制

    磁悬浮轴承通过电磁力实现转子与定子的无接触悬浮,彻底消除了机械磨损与润滑需求,在高速电机、飞轮储能、航空航天等领域展现出独特优势。然而,转子不平衡、外部扰动及多自由度耦合效应引发的振动问题,成为制约其性能提升的关键瓶颈。主动磁悬浮技术结合PID(比例-积分-微分)控制与FOC(磁场定向控制)算法,通过动态调节电磁力实现振动抑制,为高精度、高稳定性悬浮控制提供了核心解决方案。

  • 编码器抗干扰设计:增量式与绝对式编码器的EMC兼容性测试

    在工业自动化与精密控制领域,编码器作为位置、速度反馈的核心传感器,其抗干扰能力直接影响系统稳定性。尤其在电磁环境复杂的工厂中,电磁兼容性(EMC)问题成为编码器可靠运行的关键挑战。本文将从增量式与绝对式编码器的特性出发,系统分析其EMC干扰机理,结合测试方法与实际案例,探讨抗干扰设计的核心策略。

发布文章