当前位置:首页 > 电源 > 电源
[导读]构建了Buck变换器参数辨识的方法。通过检测电感电流和输出电压的波形信号,可辨识出电路的滤波电感、滤波电容及其等效串联电阻,并可应用于参数在线辨识,故障趋势判断和预知维护。最后通过实验验证了这一方法的有效性。

    摘要:构建了Buck变换器参数辨识的方法。通过检测电感电流和输出电压的波形信号,可辨识出电路的滤波电感、滤波电容及其等效串联电阻,并可应用于参数在线辨识,故障趋势判断和预知维护。最后通过实验验证了这一方法的有效性。

    关键词:Buck变换器;参数辨识;方法

引言

随着电力电子技术的日益发展,电力电子变换器在工业、航空、信息产业等领域得到了越来越广泛的应用。Buck变换器是一种结构比较简单,应用十分广泛的DC/DC降压变换器,也越来越多地应用在许多大功率电压变换场合。因此,对其可靠性和可维护性的要求也越来越高。

    元器件的软故障,如电容、变压器、电感、开关器件特性劣化等参数性故障,会降低变换器的工作性能和安全性,影响输出指标,严重的会引发开关器件短路或开路故障,从而造成严重的经济损失。因此,有必要研究变换器的参数辨识方法以实现参数性故障诊断,从而为故障趋势判断和预知维护创造条件。

本文通过建立Buck变换器的模型,并且在这一模型的基础上,通过最小二乘算法获得了的变换器参数辨识的方法。这种方法适用于CCM和DCM工作模式的变换器的参数辨识,能够推广到其他开关变换器,并且能够被应用于在线参数辨识和故障自动诊断系统。通过对变换器的滤波电感、滤波电容及其等效串联电阻的参数辨识的实验,验证了这一方法的有效性和准确性。

1 Buck变换器的模型构建

Buck变换器电路如图1所示。

在Buck变换器建模中,开关器件被视作理想器件。电容的等效串联电阻(ESR)是衡量电容是否正常的一个很重要的参数,同时它对电路的性能有较大的影响,特别是对输出电压的纹波影响较大,故在建模过程中予以考虑,并且在参数辨识过程中也作为一个参数来进行辨识。而电感的ESR由于其影响较小,因此建模中不予考虑。变换器的等效电路图如图2所示。

在CCM工作模式下,变换器会在两种正常的工作状态下运行,即s1=1,s2=0和s1=0,s2=1。在DCM工作模式下,变换器会在三种正常的工作状态下运行,即s1=1,s2=0、s1=0,s2=1和s1=0,s2=0。结合各种状态下变换器的微分方程组,可以归纳推导出变换器的模型为

s1及s2不能同时为1。

2 Buck变换器的参数辨识

2.1 Buck电路参数辨识的基本原理

对式(1)作离散化处理,可以得到

采用递推最小二乘法作参数辨识,t可以作为第t次观测数目,各矩阵定义如下:

于是,通过最小二乘法,可以得出一组递推算法:

式中:n取值为1,2。

将式(2)写成参数表达形式

分析中我们发现,式(2)右边第一和第二项之间有相关性。当s1+s2的值为1,即s1及s2之中至少有一个开关是导通时,第一项和第二项的状态项是相同的,当s1及s2的值为0,即s1及s2都是关断时,第二项的值始终为零,因此,理论上虽然并不是相对应的收敛于a11,h11,a21,h21,a12,h12,a22,h22,但却应该分别收敛于

由所得到的过程参数估计值可以计算出需要辨识的参数值如下:

2.2 Buck电路参数辨识实验

实验系统的方框图如图3所示,通过PCI9810高速数据采集卡,将经过信号调理的Buck电路的电感电流、输出电压和控制脉冲信号采集进入PC中,在PC中进行数据处理和参数辨识的工作。

实验环境如下所述。输入电压值在30V左右,开关频率维持在20kHz,采样频率是3MHz,采集点数是400点,电容(C)值是302μF,电感(L)值是437μH,电容ESR是0.198Ω,负载电阻值分别取2.1,6.4,8.5,12.2,14.7,21.1,33.5,48.1Ω,占空比的范围是0.1到0.9,每隔约0.1取一个值,电路运行在CCM或DCM的工作模式下,在每一组实验环境数据下做5次实验,总共做了200次实验。图4、图5分别列出CCM和DCM的信号波形图。其中,图4(a)的实验条件为占空比0.7,负载电阻值为12.2Ω,电路工作在CCM模式,图4(b)所示的波形是输出电压纹波放大图;图5(a)的实验条件为占空比0.32,负载电阻值为48.1Ω,电路工作在DCM模式,图5(b)所示的波形是输出电压纹波放大图。

    各辨识参数的误差统计如表1所列。由表1中可以看出,辨识误差大部分落在6%以内,因此,这一辨识方法还是相当有效的,可以比较准确地估计出参数值。

表1 误差统计表

 

L

C

Rc

R

0~1%

20.5%

8.5%

9%

8%

1%~2%

24.5%

9.5%

16.5%

17.5%

2%~3%

21%

18.5%

18%

18.5%

3%~4%

14.5%

21%

15.5%

20.5%

4%~5%

10.5%

26.5%

22%

18.5%

5%~6%

9%

16%

19%

14%

6%~6.17%

0

0

0

3%

3 结语

本文对Buck电路的参数进行了辨识。对于运行在两种工作模式下的Buck电路,这种方法都是适用的。该方法准确性较高并可以实现参数的在线辨识,为Buck电路的参数性故障诊断提供了一种可行的方法。它可集成于电力电子监控及故障诊断系统,从而实现系统参数的在线辨识和故障的预知诊断。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭