当前位置:首页 > 电源 > 电源
[导读]摘要:矿石矿浆的浓度和细度是选矿时重要的参考指标和判断依据。在采矿应用中,准确及时地检测出矿浆的浓度以及矿石的比重对后续的磨矿和浮选等一系列作业有着至关重要的意义。研制的WH31型智能矿浆浓度仪基于张力传

摘要:矿石矿浆的浓度和细度是选矿时重要的参考指标和判断依据。在采矿应用中,准确及时地检测出矿浆的浓度以及矿石的比重对后续的磨矿和浮选等一系列作业有着至关重要的意义。研制的WH31型智能矿浆浓度仪基于张力传感器和C8051F351单片机,应用3.5英寸TFT_LCD显示测量参数,能够同时测出矿浆浓度、细度以及矿石的比重,具有精度高、人机界面友好、操作方便、可以自动增益校准的特点。适合在矿山现场或实验室使用,也适用于冶金,化工,建筑等行业不溶固体(在水介质中)浓度和细度的测定。
关键词:张力传感器;矿浆浓度;TFT_LCD;自动增益校准;C8051F351

0 引言
    湿式选矿工艺过程都是在一定的矿浆浓度下进行的,矿浆浓度对选矿工艺有重要影响,是选矿过程中需要经常测试、调节和控制的重要参量。
    本文研制的WH31型矿浆浓度测量仪是基于张力传感器和C8051F351的智能测试系统,主要具有如下功能:TFT实时显示重量、浓度、细度和比重;增益自动校准;用户输入数据保存。

1 总体设计
    系统结构由传感器和信号调理电路,C8051F351的接口电路,TFT_LCD显示驱动电路三部分组成。总体设计框图如图1所示。


    6kg张力传感器采集的电压信号经过高精度仪表放大器INA126放大后,送入单片机内部进行A/D转换得出物品的质量,再结合数字键盘输入的矿浆体积和矿石比重,即可计算出矿浆浓度,并在3.5英寸TFT_LCD上显示。系统中的E2PROM(24LC64)用于存放增益系数、用户输入的体积和比重值。

2 硬件电路设计
    WH31型矿浆浓度测量仪的主控芯片采用Siliconlabs公司的C8051F351单片机,8 KB FLASH,256 BRAM+512 B的SRAM,内置24位△-∑高精度ADC,内核完全兼容Intel 8051。在该系统设计中,ADC采样信号几乎可以认为是直流,对字输出率也没有很高的要求,故单片机内部的24位△-∑高精度ADC是最佳选择,实际只使用其16位,就可完全满足测量精度的要求。
    在一个电子产品中,电源的好坏往往对产品的性能起着决定性作用,一个好的电源系统是任何一个电子产品硬件设计人员都优先着重考虑的问题。该系统设计使用蓄电池和交流同时供电,优先选用交流。在整个电路系统中,需要3.3 V(数字电路部分)和19 V(TFT_LCD背光)电源,蓄电池供电的电压实测为3.8~4.6 V,应用AMS1117-3.3作为整机电路的稳压芯片,由于AMS1117-3.3正常工作的最小压差是1 V,故在电源电压低于4.3 V的情况下就不能得到很好的3.3 V电压,虽然数字电路部分在低至2.7 V的情况下还可正常工作,但是电压的稍微波动对传感器和运放的影响却是致命的。[!--empirenews.page--]
    在整个电源系统设计中花费时间和精力最多的是得到稳定的3.3 V电压给传感器和运放供电。升压是必不可少的部分,但一般升压型DC-DC芯片都是开关型的,噪声较大,为减小噪声,在后级使用了线性降压稳压芯片,即最终的“一升一降”的方法。升压芯片采用SIPEX公司的SP6641AEK-5.0,将不太稳定的电源电压升至5 V,然后再使用线性降压稳压芯片AMS1117-3.3将电压稳定在3.3 V。SP6641系列是SIPEX公司推出的一款性价比较高的、针对电池应用的稳压芯片系列,此系列有多种规格的输出电压值和电流值,最低工作电压为0.9 V,效率最高87%,最大输出电流为1 A,具有关断功能。基于后级的线性降压稳压芯片AMS1117-3.3的效率考虑,采用了输出电压是5 V的SP6641AEK-5.0,将SP6641AEK-5.0的控制关断引脚连接到单片机的P0_2口,用以待机模式下的关闭运放。其设计原理图如图2所示。


    使用DC-DC升压芯片MC33063产生19 V电压来提供给TFT_LCD作为背光电源。MC33063是目前比较常用的背光升压芯片,输入电压为3.0~40 V,输出从1.25~40 V可调,最大输出电流为1.5 A,空闲电流典型值为35μA,工作频率为100 Hz~100 kHz,具有关断功能,具有温度自动补偿功能,仅用少量的外围元件就可以实现升压、降压功能,且只需要改变两个反馈电阻的取值比例就可以方便地改变输出电压,其设计原理图如图3所示。

[!--empirenews.page--]
    MC33063的输出电压完全取决于R3和R4两个电阻的比值,计算公式如下:
   
3 软件设计
    软件采用Keil C51编写,用JTAG在Keil uv3环境下在线仿真,设计总流程框图如图4所示。


    软件初始化部分包括对系统晶振、ADC、MCU端口、键盘、E2PROM等一系列的初始化操作,自检正常后进入到测量主菜单。在主菜单下通过各选择按键进入相应的测量子菜单。在程序中设置一个菜单中转站,可以有效防止由于程序各测量子菜单和测量主菜单之间的相互调用造成的内存溢出而导致程序紊乱的现象。
    浓度是通过测出的矿浆净重以及手动输入的体积和比重数据这三个物理量进行计算而得到的。细度的值跟矿石的比重、筛前及筛后的浓度值有关,在浓度菜单下可以用“校准”键来标记“筛前浓度”和“筛后浓度”,标记完成后,程序计算出细度值,并自动跳转到细度子菜单下显示出细度值。比重测量与干料的质量和体积有关,系统可自动记忆并显示出干料的质量,通过计算可得到矿石的比重值。
    自动增益校准程序能够保证该矿浆浓度测量仪在各种环境下的精度。校准步骤非常简单,用户根据菜单提示,使用一个1 kg的标准砝码即可进行校准,程序内部自动计算出单位质量下ADC的输出值并储存在E2PROM中,保证断电后此增益值数据不丢失,下次开机后直接从E2PROM中读取校准数据。

4 结语
    WH31型智能矿浆浓度仪的重量测量上限是6kg,精度为0.5g;浓度和细度测量范围均为0.0~99.9%;比重测量范围是1.00~9.99,精度为0.005。用1 kg标准砝码进行校准后,使用蒸馏水进行验证,结果测出蒸馏水比重为1.00,浓度为0.0%。带样机去陕西马鞍山金矿选矿厂的现场进行实际测量,并与用户原来的其他测量方法得到的几组数据进行比对验证,证明各项测量参数准确、整机性能稳定可靠、操作简便快捷。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭