当前位置:首页 > 电源 > 电源
[导读]DC-DC 开关转换器的作用是将一个直流电压有效转换成另一个。高效率DC-DC转换器采用三项基本技术:降压、升压,以及降压/升压。  降压转换器用于产生低直流输出电压,升压转换器用于产生高直流输出电压,降压/升压转

DC-DC 开关转换器的作用是将一个直流电压有效转换成另一个。高效率DC-DC转换器采用三项基本技术:降压、升压,以及降压/升压。

  降压转换器用于产生低直流输出电压,升压转换器用于产生高直流输出电压,降压/升压转换器则用于产生小于、大于或等于输入电压的输出电压。本文将重点介绍如何成功应用降压/升压DC-DC转换器。

  降压/升压调节器主要规格特性与定义

  输出电压范围选项: 降压/升压调节器提供额定的固定输出电压,或者提供选项,允许通过外部电阻分压器对输出电压进行编程设置。

  地电流或静态电流: 未输送给负载的直流偏置电流 (Iq) 器件的 Iq低,则效率越高,然而, Iq 可以针对许多条件进行规定,包括关断、负载、脉冲频率(PFM)工作模式或脉冲宽度(PWM)工作模式。因此,为了确定某个应用的最佳升压调节器,最好查看特定工作电压和负载电流下的实际工作效率。

  关断电流:这是使能引脚禁用时器件消耗的输入电流。低Iq对于电池供电器件在休眠模式下能否长时间待机很重要。在逻辑控制的关断期间,输入与输出断开,从输入源汲取的电流小于1 μA。

  软启动:具有软启动功能很重要,输出电压以可控方式缓升,从而避免启动时出现输出电压过冲现象。

  开关频率:低功耗降压/升压转换器的工作频率范围一般是500 kHz到3 MHz。开关频率较高时,所用的电感可以更小,还可减少PCB面积,但开关频率每增加一倍,效率就会降低大约2%。

  热关断(TSD):当结温超过规定的限值时,热关断电路就会关闭调节器。一直较高的结温可能由工作电流高、电路板冷却不佳和/或环境温度高等原因引起。保护电路包括迟滞,因此,发生热关断后,器件会在片内温度降至预设限值以下后才返回正常工作状态。

  图1所示为采用单个单元的锂离子电池供电的典型低功耗系统。  


 

  图1. 典型低功耗便携式系统

  电池的可用输出范围为放电时的约3.0 V到充满电时的4.2 V。系统IC需要1.8 V、3.3 V、和3.6 V的电压,以实现最佳工作状态。锂离子电池开始工作时的电压为4.2 V,结束工作时的电压为3.0 V,在此过程中,降压/升压调节器可以提供3.3 V的恒定电压,而降压调节器或低压差调节器(LDO)则可在电池放电时提供1.8 V的电压。理论上,当电池电压高于3.5 V时,可使用降压调节器或LDO产生3.3 V电压,但当电池电压降至3.5 V以下时,系统就会停止工作。允许系统过早关闭会减少电池需要重新充电前的系统工作时间。

  降压/升压调节器内置四个开关、两个电容和一个电感,如图2所示。

  


 

  图2. 降压/升压转换器拓扑结构

如今的低功耗、高效率降压/升压调节器在降压或升压模式下工作时,只要主动操作其中两个开关,就可以降低损耗,提高效率。

VIN大于 VOUT, 时,开关C断开,开关D闭合。开关A和B的工作方式和在标准降压调节器中一样,如图3所示。

  


 

图3.Buck mode when VIN 大于VOUT时的降压模式

当 VIN小于VOUT,时,开关B断开,开关A闭合。开关C和D的工作方式和在升压调节器中一样,如图4所示。

  


 

                                                                                图4.BoostVIN

最困难的工作模式是当VIN 处在VOUT ± 10%, 范围内时,此时调节器会进入降压/升压模式。在降压/升压模式下,两种操作(降压和升压)会在一个开关周期内发生。应特别注意降低损耗、优化效率,以及消除由于模式切换造成的不稳定性。这么做的目标是保持电压稳定,使电感中的电流纹波降至最低,保证良好的瞬态性能。

对于高负载电流,降压/升压调节器采用电流模式、固定频率、脉冲宽度调制(PWM)控制,以获得出色的稳定性和瞬态响应。为确保便携式应用的电池寿命最长,还采用了省电模式,在轻载时可降低开关频率。对于无线应用和其它低噪声应用,可变频率省电模式可能会引起干扰,通过增加逻辑控制输入,可强制转换器在所有负载条件下均以固定频率PWM方式工作。

降压/升压调节器提高系统效率

如今的很多便携式系统都采用单单元锂离子充电电池供电。如上所述,电池会从满充状态时的4.2 V开始工作,缓慢放电至3.0 V。当电池输出降至3.0 V以下时,系统就会关闭,防止电池因过度放电而受损。采用低压差调节器产生3.3 V电压轨时,系统会在

VIN MIN = VOUT + VDROUPOUT = 3.3 V + 0.2 V = 3.5 V

时关断,此时只用了电池所存储电能的70% 。但如果采用降压/升压调节器(如ADP2503或ADP2504),系统就可以持续工作到最小实际电池电压。ADP2503和ADP2504 (参见 附录) 均为高效率、600 mA和1000 mA低静态电流、降压/升压DC-DC转换器,工作时的输入电压可高于、低于或等于稳压输出电压。电源开关采用内置形式,最大限度地减少了外部元件的数量和印刷电路板(PCB)的面积。通过这种方法,系统可以一直工作到3.0 V,从而充分利用电池存储的电能,增加了电池需要重新充电前的系统工作时间。

为了节省便携式系统的电能,各种子系统(如微处理器、显示屏背光和功率放大器)不用时会在全开 和休眠模式之间频繁切换,造成电池电源线路上较大的电压瞬变。这些瞬变会使电池输出电压短时降至3.0 V以下,并触发低电量警告,从而使系统在电池完全放电前关闭。降压/升压解决方案可以承受的电压摆幅低至2.3 V,有助于维持系统潜在的工作时间。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

作者 Mohamad Ali| IBM咨询首席运营官 北京2024年5月24日 /美通社/ -- 生成式AI的兴起几乎在所有面向上给业务带来改变。根据 IBM 商业价值研究院最新的年度 CEO 研究,近60%...

关键字: IBM AI BSP 模型

台北2024年5月21日 /美通社/ -- 提供针对AMD WRX90和TRX50主板优化的DDR5 OC R-DIMM 提供容量128GB(16GBx8)到768GB(96GBx8),速度5600MHz到8...

关键字: AMD 内存 BSP GB

上海2024年5月20日 /美通社/ -- 2024年5月16日,世界知名的生命科学公司 Eppendorf 集团于第二十三届生物制品年会上成功举办了"疫路超越 推流出新"的产品发布会,正式推出大规模...

关键字: RF PEN BSP IMAC

北京2024年5月20日 /美通社/ -- 过去五年里,支付和收款方式日新月异,其发展和变化比过去五十年都要迅猛。从嵌入式数字商务的出现,到"一拍即付"的...

关键字: VI BSP PAY COM

所谓“轻量级”电源系统的概念很容易理解,即以尽可能简化的BOM和尽可能小的占板面积,实现PDN所需的性能和功能。

关键字: PDN BOM DC-DC转换器

华钦科技集团(纳斯达克代码: CLPS ,以下简称"华钦科技"或"集团")近日宣布致敬 IBM 大型机 60 载辉煌历程,并将继续实施集团大型机人才培养计划。

关键字: IBM BSP 研发中心 PS

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP
关闭
关闭