当前位置:首页 > 电源 > 数字电源
[导读]混合信号芯片设计需要将模拟和数字技术集成到单颗芯片上,而这从来都不是一项简单的工作。以前,模拟和数字技术团队各自独立从事自己的设计,而把所有功能集成到单颗芯片上

混合信号芯片设计需要将模拟和数字技术集成到单颗芯片上,而这从来都不是一项简单的工作。以前,模拟和数字技术团队各自独立从事自己的设计,而把所有功能集成到单颗芯片上这项不受重视的工作,却被交给布局和布线团队。微控制器设计,包含所有精心设计的外设,都会进行布线连接,另外还有完成设计所需的振荡器、模数转换器和收发器的模拟器件。第一次真正设计测试是在实验室测试工作台上采用第一颗芯片进行的,这个过程存在潜在风险,在能够投入量产之前,不可避免地导致一次或多次对Metal Layer进行修正。 值得庆幸的是,随着EDA设计工具的不断进步,凭借其先进的集成的混合信号分析功能,我们更容易发现在数字外设与模拟模块混合时可能出现的问题。 因此,由于错误导致的风险和潜在成本也随之显著降低,这使得带有各种外设和功能的芯片器件的开发非常符合垂直市场需求,吸引力也显著增加。

推动这种深度集成的另一个因素是市场对应用和电器提出了前所未有的高能效级别要求。 在欧盟国家,92/75/EC能源标签指令提高了消费者的能源消耗意识,同时也提供了对各种能源需求简单易懂的比较,包括各种家用电器、空调、照明设备、汽车的能源需求。 美国也针对本国出产的产品执行“能源之星”标准的类似计划。计算机电源可以进行80 Plus标准自愿认证,最高级别的钛金认证提出了一些非常苛刻的能效级别要求,还要求达到高于0.9的功率因数。由于人们对能耗的高度关注,白色家电制造商非常谨慎地选择他们所使用的微控制器产品。以前谁会想到电冰箱设计会要求采用具有低功耗休眠模式和半智能自主外设模块的微控制器,以帮助达到A+++能源标签级别。

这一切都意味着传统电路设计方法(使用纯模拟或混合信号器件,或外部处理器)已经无法再应对这些挑战,也不再是用户的首选方法。为了进一步降低设计导致的能源损失,必须将处理器集成到系统中,采用半智能和/或半自主外设模块,以便能够根据应用的最精确测量信息,进行正确的控制选择。32位ARM Cortex-M0处理器非常适合为此类系统提供必需的处理智能。它具有12,000个逻辑门,与占用更多面积的相邻模拟模块相比,所需的芯片面积可以忽略不计(图1)。因此,在设计中增加这样一个智能区域,其成本微乎其微,同时还为最终用户增加可观的价值,让他们能够开发具有更高价值定位的产品。该处理器的最低功耗仅为16μW/MHz(90LP工艺),具有单周期32x32乘法器选项,Cortex-M0内核在提供出色的系统级功效和功耗比方面具有很大优势。

 

 

图1

ADI公司的ADSP-CM40X系列器件展示了处理内核和半自主外设的巧妙集成(图2)。例如,为了进行PMSM电机控制,这些混合信号控制处理器采用了双16位模数转换器,具有14位精度。这样可为精确测量进入电机的电流提供一个很好的起点。但仅有精确测试还是不够的,测试时间对于我们确保精确了解要控制的电机的状态也同样重要。首先,双模数转换器可确保两个测试是同时进行的,从而提高控制回路精度,实现性能增强。除此之外,模数转换器还与PWM模块同步,确保采样在零向量的中间点发生,提供有效抑制开关波纹的瞬时平均电流。片上Cortex-M4处理器具有浮点功能,可以利用这些精确信息来实现复杂控制算法,从而实现对电机的高能效控制。

 

 

图2

英飞凌的XMC4000系列MCU也是一个例子(图3)。他们的器件面向太阳能逆变器、SMPS、UPS和电机控制等应用,带有CAPCOM捕捉和比较单元、12位模数转换器、Delta Sigma解调器和PWM模块。如果是隔离的,这些模块不会有任何特殊意义,但在与集成的“连接矩阵”相结合时,这些模块能够半自主地执行很多控制和测量任务,从而为具有DSP扩展的ARM Cortex-M4内核(在CMSIS DSP库的支持下)提供信息和实现高能效解决方案的机会。

 

 

图3

另外一个例子则是Dialog Semiconductor。作为ARM Cortex-M0处理器的新授权厂商,Dialog Semiconductor计划进一步扩展PMIC和电池管理器件系列,提供集成处理能力。

随着物联网吸引越来越多的关注以及技术的发展,它已经日益成为现实,有望为我们提升能效带来更多机会。一方面,物联网将使消费者更加重视电器的能耗,与智能手机和平板电脑应用共享能耗信息。另一方面,电器、电源和电机控制系统实现了相互通信的能力,不仅可能实现单个设备级别上的节能,还能实现很多设备组成的整体系统的全面节能。集成处理器是实现这种愿景的必需要素。有一点我们可以肯定:市场对精心设计的混合信号芯片器件的需求将继续增长,同时也需要功能强大的高能效处理内核作为补充,提供更多能耗优势。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭