当前位置:首页 > 嵌入式 > 嵌入式硬件

汽车制造商们坚持不懈地改进车内舒适性、安全性、便利性、工作效能和娱乐性,反过来,这些努力又推动了各种车内数字技术的应用。

然而,汽车业较长的开发周期却很难跟上最新技术的发展,尤其是一直处于不断变化中的车内联网规范,以及那些来自消费市场的快速兴起和消失的技术,从而造成了较高的工程设计成本和大量过时。向这些组合因素中增加低成本目标、扩展温度范围、高可靠性与质量目标和有限的物理板空间,以及汽车设计中存在的挑战,最多使人进一步感到沮丧。可编程逻辑器件(PLD),如现场可编程门阵列(FPGA)和复杂PLD(CPLD),已经登场亮相,且被证明是一种灵活、成本有效和可行的技术解决方案,并可提供比目前采用的传统硬件解决方案更好的上市时间。

汽车设计的商业方面正变得越来越重要。在一项基于391种不同尺寸设计的哈佛大学研究中人们发现,平均ASIC SOC设计需要十四到二十四人月,而平均FPGA设计则需要六到十二人月。这是在开发时间方面存在的55%的平均差距,这表示可以通过FPGA设计加快时间关键设计的上市速度,同时还可降低设计成本和开销。另一项通常不被计入开发成本公式的主要因子是非重发性设计成本(NRE)和掩膜费用。在90纳米工艺技术节点上,一套ASIC SOC掩膜组的平均成本在100万美元到150万美元之间,而这些成本随每次工艺尺寸的缩小而加倍。同时,由于采用这些更小技术进行设计的复杂度提高,因缺陷或版图问题而必须对ASIC SOC设计进行芯片改版的机会亦提高至接近40%。*设计工程师必须把这两个问题结合在一起看作一种潜在风险和附加成本。这可能是为什么2000年至 2003年间全球ASIC设计启动减少约50%并继续逐年下降的关键原因之一。

可编程逻辑器件(PLD)如FPGA和CPLD等提供了最大的硬件灵活性。由于这些器件具有可重编程的本性,开发者得以享受从原型一直到生产阶段随时更新设计的便利。由于PLD设计通过软件位流来进行编程,因而使快速设计修改变得容易而直接,且不存在NRE或掩膜成本。

由于PLD在逻辑密度和封装迁移方面均具有可伸缩性,因此它们允许设计者进行全面的修改而仍保持正确的引脚和逻辑密度。这可实现出色的单位逻辑价格成本点和针对每个设计专门定制的引脚数量。PLD设计由硬件描述语言(HDL)组成,以实现面向嵌入式处理器的逻辑和C源文件。这些设计源文件可用于实现和重配置任何PLD,任意次数。设计者还可利用已有设计或设计的特定部分在新项目中重用。这种可伸缩性和代码的重用性避免了产品过时淘汰并可降低成本,因为开发者可以快速和轻易地升级其设计,使之面向最新的低成本器件。我们发现在汽车设计领域有一个普遍的误解,就是以为FPGA对于生产而言太贵了。五年以前,一百万系统门售价在45美元左右。今天,同样的一百万系统门器件售价不足10美元,而更小的10万系统门设计售价不足3美元,从而允许将多个组件大规模集成到单个器件内。现在已完全能够将FPGA纳入全面生产并达到汽车市场所要求的系统成本目标。

PLD的可编程本性还提供了另一水平的优势--车内可编程性和重编程性。设备车内可编程性支持在产品部署后也可对其算法和功能进行升级。由于目前的远程信息处理和视频图像识别系统还处在研究与开发的早期阶段,因此现场可升级的能力将会是一种至关重要的资产。随着技术--如图像处理算法--随时间而改进,硬件升级将可在大约几分钟内完成,而无须重新设计ASSP或设计一款新的电路板。

例如,在仪表组和中心堆叠显示设计中,低压差分信号(LVDS)收发器已为汽车设计者提供了实现平板显示器(FPD)应用所需的低噪声、高速信号接口。最近,低摆幅差分信号(RSDS)信号接口已被各家显示器制造商采用。这种新的信号传输技术比LVDS具有许多优点,包括较低动态功耗、进一步降低的辐射EMI、减小的总线宽度、高噪声抑制和高吞吐率。再一次,PLD的动态本性为开发者带来优选优势。PLD支持众多I/O信号标准,为开发者提供在其设计中整合新兴技术如RSDS等的选择。通过快速适应变化的标准和采用最新及最大的技术,公司可为自己创造上市时间优势,确保对任何竞争对手保持优胜。

在汽车设计的可靠性方面,有许多因素需要考虑。虽然ISO -TS16949认证早已为市场所知,设计者仍需更深入一步了解。许多公司通过第三方分包商进行生产。设计者必须确保供应商本身是经过认证的。否则,该提供商的设计和操作流程即未达到工业标准。在汽车远程信息处理应用中,AEC-Q100汽车IC应力测试鉴定与PPAP文档化也是必须遵循的。

回到技术方面,使用PLD还将提高可靠性。虽然LVDS发射器与接收器配对在市场上早有供货,但采用PLD可让开发者将收发器集成在单个器件内。PLD不仅提供了各种集成信号传输功能,而且还集成了源和终端电阻。通过消除大量分立元件,设计者可以减少元件数量,从而简化PCB,实现可靠得多的信号传输结构。最终结果将是一个更为成本有效和可靠的系统。

PLD不仅可集成信号传输能力,而且还提供了将整个系统包含在单个可编程器件上的能力,这也包括处理器。通过将整个设计放在单个芯片上,设计者可以减少电路板上的元件数量及相关连接,从而构成一个可伸缩、便携和可靠的系统。例如,色温是车载显示器开发者需要面对的许多图像增强问题之一。世界上的不同区域对色温优选参数的要求不同。通过使用PLD创建一种可伸缩的色温调节解决方案,该解决方案可在许多地理区域内使用,支持多种显示器类型,只需针对地理上优选的色温设置进行微小的调节。平台可伸缩性和设计可靠性丝毫未减,同时还可以节省成本。

大多数PLD具有内置时钟调理功能,以便进行占空比校正,和时钟管理器,以允许进行时钟控制。时钟管理器被安置在内部专门的低畸变线上,以实现精确的全局性时钟信号。这种时钟提供了高速时钟设计的完整解决方案,例如图像处理所需要的那些设计。抗畸变的内部和外部时钟消除了时钟分布延迟并提供了高分辨率相移。这些时钟还具有灵活的频率综合功能,可生成输入时钟频率分数或整数倍的时钟频率。可靠的时钟管理系统对时序和控制电路来满足不断增长的显示需求非常有用。

图像缩放需求同样可以采用PLD来解决。以实时图像尺寸调整为例。线路缓冲器和系数组可通过块RAM来实现。其他所有东西,包括垂直和水平乘法器、加法树、定序器与控制等,可使用PLD内的基本逻辑结构来实现。同时垂直和水平乘法器之间无需进行中间缓冲,因而不存在帧延迟。

目前许多汽车远程信息处理应用需要高性能视频和图像处理能力。PLD拥有大量特性,使得它们特别适合处理各种应用,如导航系统和后座娱乐/视频等,纯粹从架构角度来看,采用PLD将提供各种性能优势。例如,FPGA中的分布式RAM用于存储DSP系数和FIR滤波器,可提供高存储器带宽。双端口块RAM针对数据缓冲和存储进行了优化,并可用于FFT等应用。使用由嵌入式乘法器和累加器构建的MAC,PLD还可每秒执行几十亿次MAC运算。PLD中的大量乘法器还可用于创建并行乘法器阵列,支持复杂的高性能DSP任务,而传统的DSP只能限于执行串行处理。嵌入式SRL16由寄存器和LUT构成,支持多通道数据路径的高效实现。通过支持构建高效的时分复用(TDM)硬件结构,它们还可极大地提高FPGA计算强度。

图1:传统DSP与FPGA DSP比较

简单使用PLD,开发者可以充分利用其灵活架构和分布式DSP资源,如查找表(LUT)、寄存器、乘法器和存储器等。通过遍布器件的分布式DSP资源、分段式布线和组件使用,FPGA可以使算法在器件中最佳地实现。例如,设计者可以调整阵列的尺寸,使之适合准确的计算要求,特别适用于对图像进行计算。计算可以对几组像素进行,例如对离散余弦变换(DCT)块和图像中的其他块并发进行计算,而不必顺序扫描整个图像。而且由于现在处理可以实时完成,因此使用 PLD时缓冲像素值对存储器的需求减少。

尽管传统的可编程DSP可满足宽范围的应用,但其具有自己的限制。例如,传统DSP 受其架构束缚,具有固定数据宽度和有限的MAC单元,因此其串行处理方式限制了其数据吞吐率。这迫使系统必须以较高的时钟频率运行,以提高数据吞吐率,但却产生了一系列其他挑战。同时,它采用多个DSP来满足带宽需求,产生功耗和电路板空间问题。通过使用PLD,设计者可以实现解决更高性能、高质量、实时显示器挑战所需的定制解决方案。PLD,凭借其灵活架构和DSP资源,可同时支持串行和并行处理。通过选用并行处理,系统具有了在单个时钟周期内最大化其数据吞吐率的潜力。再次,设计者可以调整阵列的尺寸以适应特定的处理需求。

那些通常通过定制、离散ASIC、ASSP或图像处理器来解决的问题,找到了在PLD中的解决方法。例如,在高分辨率LCD监视器的伽马校正需求中有一种DSP图像增强应用。伽马校正控制着图像的总体亮度。它还会影响某种特定颜色表现的色调,影响红到绿到蓝的比例。所有图像源均假定显示设备具有非线性的亮度输入输出函数,称为伽马函数,公式为Vout= Vin^y,其中y一般在2.2到2.8之间。如果这种偏差没有得到校正,输出显示将呈现具有很小色饱和度的苍白显示。在PLD中,RGB空间的伽马校正一般通过动态更新LUT以便在输出端显示适当的响应来完成。若把8位和10位LUT近似进行比较,很显然10位分辨率更接近理想的伽马曲线。

采用10位LUT时这种近似的公式为:X'=1023*(X/256)^(1/γ),其中X'=R'、G'或B',10位校正输出;X=R、G或B,8位未校正伽马输入。注:如果计算出现小数结果,则使用标准的四舍五入法。

经过伽马校正的30位R'G'B'输出需要通过图像抖动引擎,来找出对输出到显示设备最接近的颜色24位RGB输出。有多种图像抖动算法。通过采用PLD,开发者可以对多种算法快速进行比较,以确定哪种算法满足其应用要求。抖动算法还可快速且容易地修改,只需在源代码中进行算法修改,然后重新配置PLD即可。

色温校正器是反馈装置,它将根据输出的颜色响应动态地修改输入RGB值。RGB输出的值与黑体辐射色温进行比较,以动态确定理想的色温输出。

这可以在单片PLD中实现,如下所示。

图2:伽马校正

汽车行业正在迎来其历史上最激动人心和最具挑战性的时代。包含新的和快速变化协议的新模块不断实现,这些协议中有些来自快速演进的消费市场。更苛刻的进度限制使保持汽车行业的高质量和可靠性要求更加困难。灵活和平台可伸缩的系统级集成逐渐成为必需,以达到低OEM模块成本目标。

今天的PLD已成为固定逻辑器件的一种可行的替代选择。PLD提供商们正在面对汽车市场展示其服务承诺,这包括推出温度容限为-40℃~+125℃的封装和努力达到汽车行业的严格要求,包括ISO TS 16949认证,AEC-Q100鉴定流程和生产件批准程序(PPAP)。这使得汽车工程师们能够在对元件质量和性能完全放心的情况下,满足其挑战性的设计目标,同时提供快速响应不断变化的汽车和多媒体标准与协议的能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国北京(2025年9月2日)—— 业界领先的半导体器件供应商兆易创新GigaDevice(股票代码 603986)受邀出席2025智能汽车基础软件生态大会暨第四届中国汽车芯片大会,并与国内领先的AUTOSAR车用操作系...

关键字: 汽车电子 MCU 智能汽车

不久前,作为行业领先的传感器和电源解决方案的领导者之一——Allegro携手合作伙伴成功举办《Allegro高速电机位置检测解决方案,赋能未来智能驱动》线上技术研讨会。基于在磁传感领域的技术积淀与持续创新,Allegro...

关键字: 传感器 汽车电子

上海2025年8月20日 /美通社/ -- 今日,全球领先的集成电路成品制造和技术服务提供商长电科技(600584.SH)公布了2025年半年度报告。财报显示,今年上半年长电...

关键字: 封装 长电科技 系统集成 汽车电子

汽车电子系统日益复杂,AUTOSAR(Automotive Open System Architecture)标准通过分层架构实现了软件与硬件的解耦,为传感器驱动开发提供了标准化框架。传感器作为感知层核心组件,其驱动开发...

关键字: AUTOSAR 汽车电子

随着电动汽车(EV)行业迈向800V高压时代,如何高效、安全地实现更高电压输出成为技术焦点。全球领先的测试测量解决方案提供商——泰克旗下EA Elektro-Automatik品牌直流可编程电源的串联连接技术为800V高...

关键字: 测试测量 汽车电子

中国上海,2025年7月22日 — 全球领先的嵌入式开发工具供应商IAR与车规级芯片领军企业杰发科技AutoChips共同宣布,IAR Embedded Workbench for Arm已全面支持杰发科技AutoChi...

关键字: 汽车电子 工具链 MCU

在汽车电气化浪潮中,48V启动停止系统凭借其节能增效优势迅速普及。然而,该系统在复杂电磁环境下的电磁兼容性(EMC)问题,已成为制约产品量产的关键瓶颈。本文结合某车型48V电源模块的整改案例,系统阐述EMC问题诊断与优化...

关键字: 汽车电子 EMC 电磁兼容性

随着汽车智能化、网联化的飞速发展,下一代汽车电子设计正面临着前所未有的安全挑战。现代汽车已从单纯的机械交通工具转变为高度复杂的移动计算平台,电子系统在汽车中的比重不断增加,功能日益强大。这一变革在提升驾驶体验和汽车性能的...

关键字: 汽车电子 智能化 电子系统

在科技飞速发展的当下,汽车正从单纯的交通工具向智能移动终端转变。汽车电子行业作为这一变革的核心驱动力,已成为国际半导体巨头竞相角逐的热点领域。

关键字: 汽车电子 半导体 新能源

电磁兼容性(EMC)鲁棒性设计已成为保障车辆安全的核心技术领域。面对复杂电磁环境下的瞬态脉冲干扰,基于ISO 11452标准的防护电路参数优化,通过多物理场耦合设计与实验验证,实现了从部件级到系统级的抗扰能力跃升。

关键字: 汽车电子 EMC
关闭