当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]噪声消除的DSP算法研究


    在语音传输的过程中,语音增强方案经常被采用。它使用FEC编码技术(由卷积编码和维特比译码算法组成)进行数据传输,有着大批量的数据运算(包括卷积和译码等算法)和检测,而且都是采用先进的DSP处理器来完成的,其中就包括语音编码和降噪。


1 干扰相减降噪技术研究
    为了降低信号在传输过程中的噪声,改善语音传输质量,大多会采用三种通用的语音增强方法。首先是干扰相减法,即通过减掉噪声频谱来抑制噪声;其次是谐波频率抑制法,即利用语音增强的方法来完成减噪,基于噪声的周期性原理,利用谐波噪声的自适应梳状滤波实施基频跟踪来完成降噪;第三是利用声码器再合成法,它利用迭代法,在语音建模的基础上,估计模型参数,用描述语音信号的方法再重新合成无噪声信号。
    每种方法都有自己的特点,这里介绍噪声相减法降噪。单通道语音增强系统(图1)必须在无语音期间,也就是在只有背景噪声存在时估计噪声的特性。通过语音启动检测器(VAD)采集有效的语音源和噪音源,然后利用噪声相减算法实现降噪。基于声音语音的周期性,时域自适应噪声抵消法可以通过产生参考信号而加以利用。其中,参考信号是延迟主信号一个周期形成的,需要有复杂的间距估计算法。在语音帧内利用FFT,用估计的噪声幅值频谱相减,并逆变换这个相减后的频谱幅值,再利用原始噪音的相位,求出有噪音短时幅值和相位频谱。增强步骤一帧接一帧地完成。此方法先把污染的语音利用带通滤波器组分解成不同的频率组,随后每个分波段的噪声功率在无语音期间被估计出来。通过利用衰减因子可以获得噪声抑制,其中衰减因子相对应于每个分波段估计噪声功率比上的瞬时信号功率。

2 谱相减降噪技术研究
    目前,多数的通信减噪都是使用DSP来完成的,主要是使用FFT降低噪声。其中,频谱相减提供了有效的计算方法,通过从有噪声语音谱中减去噪声频谱,即增强了语音,又降低了噪声。有噪声语音被分段,并且被设置窗口,每个数据窗口的FFT均被执行,并且幅值频谱被计算出来。VAD用来检测输入的语音信号。在非语音段,噪声频谱将会被估计出来,并存入缓存区,再通过算法使得缓冲器内的数据衰减,从而使噪声减小。在非语音期间,有两种方法产生输出:用固定因子衰减输出或设置输出为0。在非语音帧期间具有某种残余噪声(舒适噪声),可输出比较高的语音质量,原因是在语音帧期间,噪声局部地被语音屏蔽,它的幅值将会在非语音段上被存在的相同量值的噪声所平衡。在语音段上设置输出为0,具有放大噪声的效果,因此在非语音期间,最好通过固定因子衰减噪声。幅值与语音段上可觉察的噪声特性,以及噪声段上可觉察的噪声之间必须保持平衡,所以不希望的音响效果,如嗡嗡声、咔嗒声、抖动声、语音信号的模糊不清等,均可以避免。 [!--empirenews.page--]
    在描述算法之前,先设置一些参数,并做数据分析。首先假设背景噪声是平稳的,并且在语音段内,使其希望幅值频谱出现在不变的语音段之前。如果环境是变化的,则在语音帧开始之前,有足够的时间去估计背景噪声的新幅值频谱。对于缓慢变化的噪声算法,需要根据VAD参数确定语音是否已经终止,同时估计新的噪声影响,然后利用频谱相减法,就可以使得噪声明显下降。
    假设信号s(n)受到干扰信号v(n)的影响而遭到损失,则被污染的有噪声信号可以表示为:
   
    取x(n)的DFT得到:
   
    假设V(n)为零均值,且与S(n)不相关,则S(K)的估计可以表示为:
    s(k)=|x(k)|-E|V(k)|
    式中:E|V(K)|是发生在非语音周期上的期望噪声频谱。
    给定估计|s(k)|,则谱估计可以表示为:
    |s(k)|=|s(k)| ejθx(k)
    式中:
   
    式中:θx(k)是被测量的有噪声信号的相位,利用噪声语音相位,可以满足实际目的需要。因此利用短期语音幅值频谱的估计|s(k)|和受到损害的语音相位θx(k)重构处理后的信号,估计器可以表示为: 
   
    方程给出的频谱相减算法避开了对相位的计算,在浮点DSP硬件中实现。为了降低噪声得到良好的听觉效果,除了以上算法外还有谱幅值平均法、半波整流法和残余噪声减小法,其目的都是为了得到更好的效果。


3 结 语
    无论在通信系统还是其他领域,噪声的消除都是科技飞速发展过程中面临的难题,因此降噪算法显得尤为重要。目前,利用DSP降噪技术也越来越成熟。随着相关技术的不断发展,一定能还社会一个安静和谐的生活环境。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭