当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]I2C的读写操作实验

[实验任务]
   利用24C08断电以后存储的数据不消失的特点,可以做一个断电保护装置。首先利用单片机做一个0-99秒的自动计时器。然后随机关断电源,在 通电以后计时器接着断电前的状态继续计时。

[实验原理]
    首先简单的说明以下I2C总线,I2C总线是一种串行数据总线,只有二根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。在 I2C总线上传送的一个数据字节由八位组成。总线对每次传送的字节数没有限制,但每个字节后必须跟一位应答位。数据传送首先传送最高位(MSB),数据传送按图1所示格式进行。首先由主机发出启动信号“S”(SDA在SCL高电平期间由高电平跳变为低电平),然后由主机发送一个字节的数据。启动信号后的第一个字节数据具有特殊含义:高七位是从机的地址,第八位是传送方向位,0表示主机发送数据(写),1表示主机接收数据(读)。被寻址到的从机设备按传送方向位设置为对应工作方式。标准I2C总线的设备都有一个七位地址,所有连接在I2C总线上的设备都接收启动信号后的第一个字节,并将接收到的地址与自己的地址进行比较,如果地址相符则为主机要寻访的从机,应在第九位答时钟脉冲时向SDA线送出低电平作为应答。除了第一字节是通用呼叫地址或十位从机地址之外第二字节开始即数据字节。数据传送完毕,由主机发出停止信号“P”(SDA在SCL高电平期间由低电平跳变为高电平)。
   AT24C系列串行E2PROM具有I2C总线接口功能,功耗小,宽电源电压(根据不同型号2.5V~6.0V),工作电流约为3mA,静态电流随电源电压不同为30μA~110μA,AT24C系列串行E2PROM参数如下
型 号    容 量   器件寻址字节(8位) 一次装载字节数 
AT24C01  128×8   1010A2A1A0  R/W         4 
AT24C02  256×8   1010A2A1A0   R/W         8 
AT24C04  512×8   1010A2A1P0   R/W         16 
AT24C08  1024×8  1010A2P1P0   R/W         16 
AT24C16  2048×8  1010P2P1P0   R/W         16  
  由于I2C总线可挂接多个串行接口器件,在I2C总线中每个器件应有唯一的器件地址,按I2C总线规则,器件地址为7位数据(即一个I2C总线系统中理论上可挂接128个不同地址的器件),它和1位数据方向位构成一个器件寻址字节,最低位D0为方向位(读/写)。器件寻址字节中的最高4位(D7~D4)为器件型号地址,不同的I2C总线接口器件的型号地址是厂家给定的,如AT24C系列E2PROM的型号地址皆为1010,器件地址中的低3位为引脚地址A2  A1  A0,对应器件寻址字节中的D3、D2、D1位,在硬件设计时由连接的引脚电平给定。 
  对AT24C系列 E2PROM的读写操作完全遵守I2C总线的主收从发和主发从收的规则。

[C语言源程序]
#include <AT89X52.H>
#include <stdio.h>
#include <absacc.h> 
unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,
                         0x6d,0x7d,0x07, 0x7f,0x6f,}; 
unsigned char sec;        //定义计数值,每过1秒,sec加1 
unsigned int tcnt;        //定时中断次数
bit  write=0;             //写24C08的标志;
sbit gewei=P2^0;          //个位选通定义
sbit shiwei=P2^1;         //十位选通定义
/////////24C08读写驱动程序////////////////////
sbit scl=P3^4;   // 24c08 SCL
sbit sda=P3^5;  // 24c08 SDA
void delay1(unsigned char x)
{  unsigned int i;
  for(i=0;i<x;i++);
  ;}
void flash() 
{  ;  ; }
void x24c08_init()  //24c08初始化子程序
 {scl=1; flash(); sda=1; flash();}
void start()        //启动I2C总线
{sda=1; flash(); scl=1; flash(); sda=0; flash(); scl=0; flash();}
void stop()         //停止I2C总线
{sda=0; flash(); scl=1; flash(); sda=1; flash();}
void writex(unsigned char j)  //写一个字节
{  unsigned char i,temp;
   temp=j;
   for (i=0;i<8;i++)
   {temp=temp<<1; scl=0; flash(); sda=CY; flash(); scl=1; flash();}
   scl=0; flash(); sda=1; flash();
}
unsigned char readx()   //读一个字节
{
   unsigned char i,j,k=0;
   scl=0;  flash();  sda=1;
   for (i=0;i<8;i++)
    {  
flash();  scl=1;  flash();
      if (sda==1) j=1;
      else j=0;
      k=(k<<1)|j; 
   scl=0;}
   flash();  return(k);
}
void clock()         // I2C总线时钟
{
   unsigned char i=0;
   scl=1;  flash();
   while ((sda==1)&&(i<255))i++;
   scl=0; flash();
}
////////从24c02的地址address中读取一个字节数据/////
unsigned char x24c08_read(unsigned char address)
{
   unsigned char i;
   start(); writex(0xa0);
   clock(); writex(address);
   clock(); start();
   writex(0xa1); clock();
   i=readx(); stop();
   delay1(10);
   return(i);
}
//////向24c02的address地址中写入一字节数据info/////
void x24c08_write(unsigned char address,unsigned char info)
{
   EA=0;
   start(); writex(0xa0);
   clock(); writex(address);
   clock(); writex(info);
   clock(); stop();
   EA=1;
   delay1(50);
}[!--empirenews.page--]
/////////////24C08读写驱动程序完/////////////////////
void Delay(unsigned int tc)     //延时程序
{
 while( tc != 0 )   
    {unsigned int i;   
     for(i=0; i<100; i++); 
     tc--;}
}
void LED()                  //LED显示函数
{
   shiwei=0; P0=table[sec/10]; Delay(8); shiwei=1;
   gewei=0;  P0=table[sec%10]; Delay(5); gewei=1;
}
void t0(void) interrupt 1 using 0  //定时中断服务函数

TH0=(65536-50000)/256; //对TH0 TL0赋值
TL0=(65536-50000)%256; //重装计数初值
tcnt++;        //每过250ust tcnt加一
if(tcnt==20)  //计满20次(1秒)时
   { 
    tcnt=0;   //重新再计
    sec++;
    write=1;  //1秒写一次24C08
    if(sec==100) //定时100秒,在从零开始计时
      {sec=0;} 
   } 
}
void main(void) 

TMOD=0x01;  //定时器工作在方式1
ET0=1;  EA=1; 
x24c08_init();        //初始化24C08
sec=x24c08_read(2);//读出保存的数据赋于sec
TH0=(65536-50000)/256; //对TH0 TL0赋值
TL0=(65536-50000)%256; //使定时器0.05秒中断一次
TR0=1;           //开始计时
 while(1) 
  {
  LED();
 if(write==1) //判断计时器是否计时一秒
    {
  write=0;              //清零 
     x24c08_write(2,sec);  //在24c08的地址2中写入数据sec
 }
   }
}

 

[硬件电路图]

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭