当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]双DSP系统串口扩展

在研制无线分组网络路由控制器时,采用了双DSP结构进行数据处理,另外还需扩展8个串口,很显然这是DSP本身所无法解决的,故必须进行串口扩展
 

常用串口扩展方法:
从本质上讲,所有的串口扩展接口电路都是以并行数据形式与CPU接口,而以串行数据形式与外部逻辑接口。它们的基本功能是从外部逻辑接收串行数据,转换成并行数据后传送给CPU;或者从CPU并行输出的数据,转变成串行数据后输出给外部逻辑。串行通信接口电路至少包括一个接收器和一个发送器,而接收器和发送器都分别包括一个数据寄存器和一个移位寄存器,以便实现CPU输出→并行→串行→发送或接收→串行→并行→CPU输入操作。

 
串口扩展的方法一般有三种,一是全部应用硬件,由中小集成电路构成串口,这种方法已很少使用;二是利用通用I/O口,由软件来设定波特率;三是应用串行接口器件(如UART、USRT、USART等)来扩展串口,CPU只需通过这些接口器件所提供的接口来编程,就可以实现串行通信。
 

SCC85C30的性能特点
对一个需进行实时多路并行数据处理的系统来说,选用一种高效可靠的串行通信接口器件是非常重要的。Zilog公司的串行通信控制器(SCC)85C30就是一种高性能的串行通信接口器件,其功能比其它USART(Universal Synchronous Asynchronous Receiver/Transmitter通用异步同步收发器)强大的多。85C30串行通信控制器(SCC)是一种双通道、多规约数据通信外围器件,该芯片为处理各种有效的串行通信规程提供多功能支持:可起到串-并、并-串的转换器/控制器作用,它在程序控制下可满足串行通信上广泛多样的用途;具有波特率发生器、数字锁相环和晶体振荡器,使外部逻辑得到简化;能以多种方式产生和检测CRC码,并可通过多种方式编程来检查数据的完整性,有同时在两条通道上控制调制-解调的能力。在不需要这些控制的用途中,调制-解调控制器可作为通用I/O。
 
85C30的每路信道可存取14个写寄存器和7个读寄存器,用户可进行配置使其能处理全部非同步格式,而与数据长度、停止位的数目或奇偶要求无关。还能处理所有的同步格式,包括按字符、按字节的存取规程。85C30还具有下列功能:通过检查奇偶位改变规程;插入或删除字符,生成CRC,并加以检查;生成断点和异常中止码,并加以检测;以及其它许多与规程有关的功能。
 
85C30内部结构能提供连接多路转换总线和非多路转换总线所必要的全部中断和控制逻辑。此外还有接口逻辑,用于监视调制解调器和外围控制输入输出。其控制信号都是通用的,不仅用于调制解调控制,而且适用于控制多种外围设备。数据操作和控制联接都通过内部的读和写寄存器进行,这些寄存器经编程之后,可使85C30执行各种功能(硬件开销小),即在程序排队之前或之中对寄存器赋值,以决定85C30如何建立一个给定的通信规程。
 
85C30采用附加电路支持串行通信。设计人员可以选择内部波特率发生器,选择频率并对85C30中的几个电路之一的输出编程。可在程序控制下对几种标准格式进行编码和译码。另外,还可为DPLL、波特率发生器接收器和发送器选择各种定时部件。

双DSP对多个SCC的控制设计
对一个进行实时并行多通道数据处理的双DSP系统来说,其扩展的串口也必须满足系统的实行性要求。串行接口器件性能的好坏以及双DSP对多个串行通信控制器(SCC)控制的好坏直接影响到系统的整体性能。
 
DSP系统对多个SCC控制,采用4片Zilog公司的SCC(85C30)使双DSP(TMS320F206)在原有2个异步串口和2个同步串口的基础上又增加了8个串行口(可根据需要设定为异步口或设定为同步口)。
 
85C30是较为复杂的器件,要充分利用其功能,需对其进行合理编程。在编程时需对其诸多寄存器进行操作,这在单个DSP情况下也是较为复杂的。用双DSP对其控制,以及双DSP对多SCC的控制情况更为复杂,需解决以下的问题:
(1)对SCC访问的优先权问题;
(2)数据线、地址线、选通控制线的方向问题;
(3)双DSP相互间握手、时序问题;
(4)两套总线间干扰的消除问题及总线切换时的误动作问题;
为解决这些问题,需采取硬件设计和软件设计相结合的办法,使DSP对SCC的控制更可靠,效率更高。
在硬件的设计上:
(1)采用了两套独立的数据线和地址线,重点解决了读/写、片选等切换逻辑的设计问题;
(2)采用双向三态总线驱动器(如74LS245)实现数据、地址、控制总线的隔离;
(3)把DSP(TMS320F206)的IO0、IO1、IO2、IO3设置为对SCC的访问控制线。实现DSP对SCC的分时复用。
在软件设计上:
(1)对两个DSP进行了分工,设定DSP1负责接收数据,DSP2负责发送数据;
(2)设定DSP1从第1个SCC开始向后查询,DSP2从第三个SCC向后查询,最大限度地降低二者忙闲比,提高了系统的实时性。
(3)把IO0、IO1设定为发送端口,把IO2、IO3设定为接收端口。IO0-IO3值所表达含义如附表所示。
(4)对SCC分时选通。访问某一SCC前先查询IO2、IO3以确定另一DSP是否正在访问它,若另一DSP不访问该SCC,则访问之首先把该SCC的编号通过IO0、IO1发送给另一DSP;若另一DSP正访问它,则跳过该SCC,访问下一SCC,同样也把该SCC的编号通过IO0、IO1发送给另一DSP。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭