当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于CPLD的MAX1032采样控制的实现

0 引言

本文主要介绍MAX1032采样芯片以及使用CPLD对MAX1032采样进行控制的方法。事实上,虽然微控制器也能对MAX1032进行方便的控制,但使用CPLD来控制系统外围设备,可以节省微控制器的资源,减轻其负担,同时可以让其处理更复杂的信息,而利用CPLD对时序进行控制则

更精确。

1 MAX1032的主要功能

MAX1032是美信公司推出的AD采样芯片MAX1030-MAX1033系列中一款。该系列是采样范围可达±12 V的多量程、低功耗、14位逐次逼近型串行输出模数转换器(ADC),数据传输符合SPI协议。当采用+5 V单电源供电时,其转换速率高达115 ksps。

MAX1032内部主要由模拟输入复用器及多通道电路、控制逻辑和寄存器、可编程增益放大器(PGA)逐次逼近数模转换器(SAR ADC)、串行I/O(Serial I/O)以及先进先出寄存器(FIFO)等主要模块构成。

MAX1032的各引脚功能如下:

CH0~CH7:模拟信号输入端。单端输入范围为:O~+6 V、-6 V~0、0~+12 V、-12 V~0和±3V;

±6 V,±12 V,差分输入,范围为:±6 V、±12V和±24V;

 

:片选输入,低电平有效。只有该端置低,数据才可同步输入(DIN)或输出(DOUT);

 

DIN:串行数据输入。

为低时,DIN上的数据在SCLK的上升沿输入片内;

 

SSTRB:串行触发输出。在内部时钟模式下,SSTRB的上升沿跳变表明转换完成;在外部时钟模式下,SSTRB一直为低电平;

SCLK:串行时钟输入;

DOUT:串行数据输出。在

为低时,DOUT上的数据在SCLK的下降沿输出;

置高时,DOUT为高阻状态;

 

REFCAP:参考电压旁路端。对于外部参考电压模式。REFCAP连到AVDD;对于内部参考电压模式,通过一个0.01μf的电容连到AGNDl;

REF:内部基准电压输出或外部基准电压输入。在外部参考电压模式下,REF端可接由外部电路提供的3.800-4.0136 V的基准电压;在内部参考电压模式下。REF端与AGNDl端之间必须连接容量为1μF的滤波电容,该端由芯片内部提供4.096 V参考电压:

DGNDO:数字I/O地;

DGND:数字地;

DVDDO:数字I/O电源输入。输入范围为+2.7~+5.25 V:

DVDD:数字电源输入;

AVDDl:模拟输入电源1,输入范围为+4.75~+5.25 V:

AVDD2:模拟输入电源2,输入范围为+4.75~+5.25 V:

AGNDl:模拟地1;

AGND2:模拟地2;

AGND3:模拟地3。

设计时,AGNDl,AGND2,AGND3,DGNDO,DGND必须接到一起。

2 MAX1032的工作原理

在使用MAX1032进行采样前,通常需要确认信号的输入阻抗在17 kΩ以内。

MAX1032总共有三种工作模式:外部时钟模式,外部采样模式和内部时钟模式。本文将针对。MAX1032的外部时钟模式并结合CPLD给出实际的应用方案。

外部时钟模式:以最快的转换速率达到最大的吞吐量,由用户直接控制采样时,CSn在转换过程中始终为低,这时,用户可通过SCLK控制A/D的转换并对结果读取。SSTRB始终为低,其转换时序图如图1所示。SCLK的周期(tCP)必须在272 ns~62 us之间。其中高低电平宽度均需大于109 ns(tCL,tCH)。在CSn由高变低后的40 ns(tCSS),可以开始对SCLK上跳沿计数,DIN的输入建立时间至少40 ns (tDS),DIN将在SCLK上跳沿时同步输入(tDH),SCLK上跳沿之后,将忽略DIN。在CSn变低之后40 ns(tDV)内,DOUT开始有效,而在CSn拉高后40 ns(tTR)内,DOUT将输出保持高阻态,其时序描述如图2所示。

 

 

在内部时钟模式,系统将以较快的速率达到最大的吞吐量,并由内部时钟控制采样,用户只需提供一个字节的SCLK,再拉高CSn,即可启动转换。和外部采样模式相同,SSTRB上跳变表示转换完成,此时,用户便可提供两个字节的SCLK来读取转换结果。

在外部采样模式,系统将以最慢的转换速率达到最大的吞吐量,并由用户直接控制采样,用户可提供两个字节的SCLK,再将CSn拉高,以启动转换。SSTRB上跳变表示转换完成,用户提供两个字节的SCLK可读取转换结果。

MAX1032总共有三个控制字:模拟输入配置字、模式控制字和转换启动字。图2所示是模拟输入控制字和模式控制字的工作时序图。三个控制字均为8位。

对于模拟输入配置字,DO~D2是选择量程的,MAX1032总共有10种量程可以选择;D3是差分/单端选择位,为低表示采样信号为单端输入.为高表示差分输入。D4~D6是输入通道选择,总共有8个采样通道。D7是字开始位,置高表示字输入开始。

对于模式控制字,D0~D2必须为低,D3必须为高。D4~D6用于工作状态选择,总共有6种工作状态。D7是字开始位,同样,置高表示字输入启动。

转换启动字D7是字开始位,D4~D2是输入通道选择。用法和模拟输入配置字相同,操作时DO~D3必须为低。

三个控制字的输入顺序是模拟输入配置字,模式控制字,转换启动字。

3 硬件设计

图3所示是本系统的结构框图。由图3可见,模拟采样信号先经过一个运放。运放的作用是降低输入阻抗。以达到MAX1032输入阻抗小于17kΩ的要求。之后,再将利用CPLD控制MAX1032进行采样,采样结果回送至CPLD,之后经过处理后的数据传到系统,由系统再将一系列二进制数换算成最终的结果。框图里的系统可以是嵌入式微控制器,也可以是数字输入输出卡等控制系统。

 

 

图4所示是MAX1032的应用电路图。由于MAX1032只允许输入阻抗小于17 kΩ,而有的采样信号不一定能满足这一要求,故需要对采样信

号进行一定处理,以降低信号的输出阻抗。由于射极跟随器的输出阻抗趋于零,故将待采样信号连到射极跟随器上可以有效降低其输出阻抗。本文选用的运放为OP07,该运放具有很低的输入失调电压和漂移,而且精度相当高,适合作为模拟信号前置运放。如将OP07接成负反馈模式,使输出等于1+R1/R2,并将滑动变阻器R1调至0Ω,那么它就可以当做电压跟随器使用。

 

 

图4中,MAX1032的外部参考电压由LTC6652提供。LTC6652是高精度电位参考芯片,本文使用4.096 V作为MAX1032外部参考电压。REFCAP在此模式下可接到5 V电源。由于MAX1032是由CPLD控制,故将DVDDO连到3.3 V。

4 CPLD逻辑设计

CPLD和MAX1032的连接图如图5所示。其中,CPLD可以选用Ahera公司的MAXII系列器件EPM240或EPM570

 

 

CPID的程序设计主要由两部分组成,第一部分是产生MAX1032的控制信号,第二部分是对MAX1032的输出结果进行处理。

clk_1MHZ为CPLD时钟,选1 MHz。通过CPLD可在内部对时钟进行分频,输出SCLK可作为MAX1032的输入时钟。DI由系统给CPLD输入,作用是选择MAX1032的控制字,同时也是CPLD的复位控制。DIN_out是给MAX1032加载的串行控制字,其加载时序可利用计数器控制。本例采用外部时钟模式,模拟输入配置字为10000110。第七位1是字开始标志;六到四位为0表示选择CH0通道输入,第三位为0表示采样信号单端输入;二到零位为110,表示量程选择0~12 V。模式控制字为10001000,第七位1是字开始标志,六到四位为0表示使用外部时钟模式。三到零位为100 0是芯片强制输入。加载完模拟输入配置字和模式控制字之后,就可以启动采样,以加载转换启动字开始采样。转换启动字为10000000时,第七位1是字开始标志,六到四位为0表示选择CH0通道输入,三到零位为0000是芯片强制输入。MAX1032控制协议和SPI类似,在SCLK的上跳沿输入,下跳沿输出。片选信号CSn时序利用计数器控制,每个控制字之间的CSn必须有一个高脉冲,脉宽至少40 ns(tCSPW),每个控制字输入完后,CSn可以立即拉高(tCSH)。以下是可综合的MAX1032控制程序的主要代码:

 

[!--empirenews.page--]

 

 

 

 

[!--empirenews.page--]

图6所示是Modelsim的仿真波形。SCLK上跳沿DIN_out的数据被MAX1032读取。

 

 

程序的第二部分的作用是将MAX1032输出的串行采样结果存入CPLD内部的一个14位寄存器。采样结果DOUT_in_S是14位的串行序列。CPLD在SCLK的上跳沿读取数据后,可将其存到一个内部寄存器,再由DOUT选择输出寄存器的高或低八位数据读出。最后的采样结果是并行输出的。总共2个字节,末两位数据无效。对于外部时钟模式,可从加载转换启动字开始计算,在第16个SCLK下跳沿,芯片将输入采样结果。得到结果即可按照公式(采样电压=12x(转换成十进制的输出结果)/16384)进行计算。以下是这部分功能的可综合代码:

 

 

 

 

 

 

图7所示是Moddsim仿真的CPLD读取MAX1032的采样结果并将其存入寄存器DOUT_P_buf的仿真图。由图可见,在启动采样后的第16个SCLK的下跳沿,MAX1032输出14位串行采样结果,CPLD将其存入内部寄存器中以待系统读取。一般在下一次采样之前,需要将CPLD复位来清除上一次采样的数据。由于外部时钟模式下的SSTRB始终为低,故本例没有对该信号进行处理。

 

 

5 结束语

本文介绍了利用CPLD控制MAX1032进行采样的实现方法,包括CPLD的内部逻辑设计和对采样信号的处理等。实验证明,该方法能够适用

需要使用CPLD控制外围电路的场合。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭