当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]接触过六西格玛管理的朋友都知道:所谓的“六西格玛的质量水平”,是指每百万个产品中只有3.4个缺陷产品,甚至更少。这相当于产品的Cp>=2,Cpk>=1.5的结果。要达

接触过六西格玛管理的朋友都知道:所谓的“六西格玛的质量水平”,是指每百万个产品中只有3.4个缺陷产品,甚至更少。这相当于产品的Cp>=2,Cpk>=1.5的结果。要达到这样近乎完美的质量水平,仅仅依靠生产阶段的管控是不够的,往往需要在设计阶段就要做好公差设计(也称“容差设计”)。

公差设计Tolerance Design是研发三阶段(系统设计、参数设计和公差设计)中的最后一环,它是指在参数设计阶段确定的最佳条件的基础上,寻找各个参数最佳的容许误差,使得质量和成本综合起来达到最佳的经济效益。相对于系统设计和参数设计而言,公差设计是最容易被忽略的一环。这一方面是因为人们对质量波动的理解不够深入,更重要的是缺乏一个成熟的公差设计的工具软件,使得企业在推行六西格玛设计时很难落地。

笔者根据近几年的研发项目实践,在很多企业已配备的统计质量管理软件JMP平台上总结出一个切实可行的公差设计解决方法,供有六西格玛设计需求的技术人员参考。

下面,结合一个在汽车、机械、电子等行业适用面都比较广的基础机械系统设计案例,介绍一下公差设计的原理及其计算机实现方式。

在一个装配环中装入3个零件,如下图所示,技术要求间隙(Gap)的目标值T=0.015,LSL

=0.005,USL=0.025,也就是Gap的长度要求满足0.015±0.010。加工的零件1、2、3的平均值mp=1.554,标准差sp=0.001,而装配环的平均值me=4.674,标准差se=0.002。假设所有部件的参数均已实现六西格玛的目标,

试问:该系统公差设计的能力如何?如果未能达到六西格玛水平,应当如何改进?

容易看出,间隙与装配环及3个零件的设计关系是:

= 0.012

所以,当前的缺陷数,由此转化得到的西格玛水平只有4.15(考虑1.5个sigma偏移,下同),没有达到六西格玛的目标。

如何改进呢?常见的有两种方法:调整均值或降低标准差。

1. 第一次改进

调整均值是相对简单的一种方法,运用JMP软件中的预测刻画器(其后台运用的是数学中的优化论Optimization Theory),实现起来就更方便了。从下图可见,当装配环的平均值调整到4.677,零件的平均值保持1.554不变,就能使间隙均值增大到0.015,与目标值重合。这时候的缺陷数PPM降到了157,由此转化得到的西格玛水平也提高到5.10,但仍未达到六西格玛的目标。

2. 第二次改进

在调整均值的功效发挥到极限之后,还可以使用降低标准差的方法来进一步优化设计。那么应该让装配环和3个零件的标准差降到多少呢?从本质上讲,答案是下述这个方程式的数值解:

这本来是一个很复杂的数学问题,涉及到计算机编程技术。但基于上述公式利用JMP软件中的预测刻画器及其内置的意愿函数功能,方程式的求解变得方便了很多。如下图所示,当装配环的标准差降低到0.0016171,零件的标准差降低到0.0008205时,缺陷数PPM就等于3.4了,也就是我们梦寐以求的六西格玛水平。

3. 第三次改进

有些人可能对第二次改进的结果已经很满意了,但还有些人却还会感到有些不足:能否根据实际需要事先指定标准差改进的比例?具体地说,在系统从5.1个西格玛向6个西格玛优化的过程中,能否分配其中30%的改进来自于零件,70%的改进来自于装配环呢?这个业务需求其实可以转化成以下三个方程式:

求解这个方程组是一个更加复杂的数学问题,需要的编程时间也更长。所幸的是,同样基于这个方程组,利用JMP软件中的预测刻画器及其内置的意愿函数功能,方程组的求解难题被轻松解决。如下图所示,当装配环的标准差降低到0.0015311,零件的标准差降低到0.0008738时,缺陷数PPM也会等于3.4,而且装配环标准差的改进比重恰巧等于事先指定的0.7,零件标准差的改进比重恰巧等于事先指定的0.3。

显然,这种改进方式有利于工程师们更积极地参与公差设计的过程,将较多的改进比重分配给容易优化、成本低廉的部件,较少的改进比重分配给不易优化、成本昂贵的部件。

总之,通过巧妙地使用一些现成的统计分析工具,我们发现:公差设计并不遥远,达到六西格玛水准的产品设计也是可望又可及的,由此而设计并制造出来的产品质量必然会更加稳健和可靠。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2025年8月26日 /美通社/ -- 在全球数字经济加速演进的时代浪潮中,海量数据资源正成为企业发展的双刃剑。超66%的企业面临"数据沉睡"危机——分散于供应链、财务、客户运营等数十个系统的业务...

关键字: AI 模型 软件 数据分析

加快开发进程;提升质量、安全性、性能与成本效益 利用耐世特在底盘领域的专业知识和线控技术产品组合 美国密西根州奥本山2025年8月11日 /美通社/ -- 耐...

关键字: MOTION 软件 运动控制 NI

从自然汲取,向未来创造 上海2025年8月8日 /美通社/ -- 2025 世界机器人大会将于8月8-12日在北京亦创国际会展中心拉开帷幕,Festo(A112展位­)将以"从自然汲取,向未来创造&q...

关键字: FESTO 机器人 BSP 软件

引言:穿越变革浪潮,迎接智能金融时代 上海2025年7月28日 /美通社/ -- 在全球科技变革的浪潮中,生成式AI正加速驱动各行业变革,金融行业尤为显著。在强监管与用户需求升级的双重压力,行业亟需重构服务模...

关键字: 软件 生成式AI 模型 数字化

宁波2025年7月28日 /美通社/ -- 日前,在第四届宁波市专利创新大赛的聚光灯下,中之杰智能的创新技术"一种基于电子周转箱的生产管理方法及系统"强势斩获专利优秀奖。这枚沉甸甸的奖章背后...

关键字: 软件 电子 智能工厂 BSP

杭州2025年7月28日 /美通社/ -- 近日,大华股份与北京北大软件工程股份有限公司(以下简称"北大软件")签署战略合作协议。双方将重点围绕长江禁渔等领域,发挥各自在产品、技术、平台等方面的经验和...

关键字: 软件 数字化

成都 2025年7月16日 /美通社/ -- 由立嘉会议展览有限公司主办的"2025第四届成渝地区装备制造业博览会"将于9月11日至13日在成都世纪城新国际会展中心盛大举办。本届博览会以&...

关键字: BSP 软件 供应链 智能制造

上海 2025年7月14日 /美通社/ -- 近日,微创软件与全球领先的工业级绿色智能系统解决方案提供商——上海电气集团股份有限公司旗下直属子公司上海电气数字科技有限公司,以下简称"电气数科"宣布深...

关键字: 电气 软件 数字化 BSP

全新的集成解决方案确保企业以安全、负责任的方式应用 AI智能体及其他生成式AI技术。 借助以上工具,企业可以对智能体执行"红队测试"和审计,并检测"影子智能体"...

关键字: IBM 软件 智能体 AI

从传统机械制造迈向数字化、智能化的转型之路,软件定义汽车(SDV)的出现,无疑成为这场变革的关键驱动力,预示着产业拐点即将来临。那么,支撑软件定义汽车发展的支柱究竟是什么呢?

关键字: 软件 传感器 智能化
关闭