当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]开发者需要能够快速开发出实施机器学习功能的深度学习神经网络,并将其转换到低功耗的嵌入式终端设备上,集成了神经网络算法的DSP芯片将成为这一难题的解决方案。终端设备智

开发者需要能够快速开发出实施机器学习功能的深度学习神经网络,并将其转换到低功耗的嵌入式终端设备上,集成了神经网络算法的DSP芯片将成为这一难题的解决方案。

终端设备智能化的需求催生本地智能化(local intelligence)

当联网的终端设备越来越多时,产生的信息数据也将呈指数式增长。如果将所有数据和数据处理全部都交给云端,必然会产生通信拥堵、传输变慢、处理时延等问题,无用的数据也会浪费云端的存储资源。

因此需要本地智能(local intelligence)让终端设备有能力判断数据的价值,只将真正有价值的数据传到云端存储。而终端设备也需要分析数据做出决策的智能化功能,尤其家庭中的图像识别和语音识别设备需要在本地实时处理信息,以保护用户的隐私。

近来,具备深度学习功能的卷积神经网络(CNN)在图像处理和计算机视觉领域得到广泛的应用,其识别正确率也大大提高。在一些生活场景中,如无人机自动避障、家庭服务机器人路径规划等,需要将这些神经网络应用到嵌入式设备上,甚至是一些低功耗的嵌入式设备,以提高设备的智能化程度和与人的交互能力。

 


▲深度学习技术取得显著成效

与神经网络深度结合的DSP处理器将成为机器学习的实施方案

目前,因为内存、功耗、计算能力等限制,在传统CPU+GPU架构的嵌入式设备上实施神经网络还有难度。业界需要一种将神经网络引入到低功耗嵌入式设备的方法。

11月23日,全球领先的信号处理器IP授权公司CEVA在深圳召开了年度技术研讨会,并发布了专为在低功耗嵌入式设备上实现深度学习和人工智能应用的第五代图像处理器IP CEVA-XM6。

其主要参数包括:最高频率1.5GHz;采用8路VLIW以提高并行计算能力;创新矢量处理单元架构,确保95%以上的MAC利用率;32路SIMD矢量浮点单元可选项,支持IEEE半精度标准及常用的非线性运算增强。

为了让开发者更好的使用CEVA-XM6,CEVA还提供基于CEVA-XM6的软件开发平台,包括硬件加速器、神经网络软件框架、软件库、CDNN 工具包。CDNN是CEVA的一套深度学习综合开发工具包,这次研讨会发布了其第二代产品。用户可以先在线下训练深度学习的神经网络模型,然后使用 CEVA网络生成器将线下的网络模型转换成适用于CEVA-XM6处理器的实时嵌入式网络。

 


▲CDNN开发包与CEVA-XM6软硬件组合使用

在研讨会上,CEVA给出了一个对比案例,使用CEVA-XM6处理器的参考设计开发板,相比于NVidia今年推出的TX1 GPU在实现AlexNet和GoogleNet两种神经网络时,处理速度快4倍,同时能耗效率提高25倍,十分适合应用在低功耗的嵌入式设备上,如智能摄像、人脸识别、无人机、全景拼接、3D重建等。

 


▲CEVA-XM6的应用场景

具备机器学习功能的终端设备将催生更多的应用场景

智能家居要真正做到智能化,与用户之间良好的交互能力必不可少,比如语音控制、手势控制等,这些都需要产品具有深度学习的功能,能够识别出用户的语音命令和手势动作。

在本次研讨会上,美国的一家语音处理技术公司展示了他们基于CEVA的处理器IP开发的低功耗语音控制芯片方案,应用于智能手机、智能家居的语音交互和语音控制,工作电流低于1mA,可以去除静态和非静态噪声,根据使用场景做定制化开发,通过前期的语音训练后能够只识别主人的语音,过滤其他人的语音命令,防止别人的误操作。

在机器视觉领域, Arcsoft公司展示了他们的最新的照片美化技术,除了传统的白肤、瘦脸等美颜功能外,还可以基于图像识别分析出拍摄对象的年龄、性别、人种、情绪和拍摄环境(如白天、夜晚)等因素,针对不同场景和对象做定制化美颜处理,省去了用photoshop做后期处理的环节,让一个普通人也可以非常简便地拍出专业级的美丽图片。他们还推出了画面防抖功能,当用户手持相机走动拍摄视频时,通过处理可以使画面保持静止状态,消除走动带来的画面抖动。

总结

随着技术的发展,原本只能在大型高功耗计算平台上实现的深度学习神经网络,将逐步在低功耗嵌入式设备上实现,使得人工智能离我们的日常生活又近了一步,也提高了物联网设备的智能化程度。在产品开发上,软硬件深度结合的开发模式将越来越普遍(比如CEVA推出的CDNN开发包与CEVA-XM6的组合使用),基于特定场景应用的算法优化和数据训练之后的智能设备才能跟人们的日常生活无缝对接,物联网技术与具体行业具体领域的联系将会越来越紧密。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

液压舵机壳体是航空液压操纵系统的核心零件 , 内部包含大量复杂流道 。传统的流道路径人工设计方法效率低下 , 结果一致性差 。针对该问题 , 提出了一种基于混合近端策略优化(HPP0算法)的流道路径规划算法 。通过分析流...

关键字: 液压流道规划 机器学习 HPP0算法 减材制造 液压舵机壳体

深入探索这一个由 ML 驱动的时域超级采样的实用方法

关键字: 机器学习 GPU 滤波器

传统的网络安全防护手段多依赖于预先设定的规则和特征库,面对日益复杂多变、层出不穷的新型网络威胁,往往力不从心,难以做到及时且精准的识别。AI 技术的融入则彻底改变了这一局面。机器学习算法能够对海量的网络数据进行深度学习,...

关键字: 网络安全 机器学习 辅助决策

人工智能(AI)和机器学习(ML)是使系统能够从数据中学习、进行推理并随着时间的推移提高性能的关键技术。这些技术通常用于大型数据中心和功能强大的GPU,但在微控制器(MCU)等资源受限的器件上部署这些技术的需求也在不断增...

关键字: 嵌入式系统 人工智能 机器学习

北京——2025年7月30日 自 2018 年以来,AWS DeepRacer 已吸引全球超过 56 万名开发者参与,充分印证了开发者可以通过竞技实现能力成长的实践路径。如今,亚马逊云科技将通过亚马逊云科技AI联赛,将这...

关键字: AI 机器学习

2025年7月28日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 持续扩展其针对机器学习 (ML) 工作优化的专用解决方案产品组合。

关键字: 嵌入式 机器学习 人工智能

在这个高速发展的时代,无论是健身、竞技、兴趣活动,还是康复训练,对身体表现的感知与理解,正成为提升表现、实现突破的关键。如今,先进技术正为我们架起一座桥梁,将每一次身体活动转化为有价值的洞察,帮助我们更聪明地训练、更高效...

关键字: 传感器 机器学习 IMU

在科技飞速发展的当下,边缘 AI 正经历着一场深刻的变革。从最初的 TinyML 微型机器学习探索低功耗 AI 推理,到边缘推理框架的落地应用,再到平台级 AI 部署工具的兴起以及垂类模型的大热,我们已经成功实现了 “让...

关键字: 机器学习 边缘 AI 无人机

北京 2025年7月17日 /美通社/ -- 随着AI迅速向边缘领域挺进,对智能边缘器件的需求随之激增。然而,要在小尺寸的微控制器上部署强大的模型,仍是困扰众多开发者的难题。开发者需要兼顾数据预处理、模型选择、超参数调...

关键字: 开源 嵌入式设备 AI ADI

在AI算力需求指数级增长的背景下,NVIDIA BlueField-3 DPU凭借其512个NPU核心和400Gbps线速转发能力,为机器学习推理提供了革命性的硬件卸载方案。通过将PyTorch模型量化至INT8精度...

关键字: PyTorch 机器学习 DPU
关闭