当前位置:首页 > 电源 > 电源-能源动力
[导读]  随着现代科学技术的发展,电力系统逐渐向综合自动化、电站无人职守的方向发展,直流电源监控系统,作为控制负荷和动力负荷以及直流事故照明负荷等的电源,是电力系统控

  随着现代科学技术的发展,电力系统逐渐向综合自动化、电站无人职守的方向发展,直流电源监控系统,作为控制负荷和动力负荷以及直流事故照明负荷等的电源,是电力系统控制、保护的基础,其可靠与否直接影响到供配电系统的安全运行[1-2]。因此提高直流电源监控系统的可靠性及自动化水平,以满足电力系统发展的需求变得越来越重要。-- 一种新型直流电源监控系统的设计

  本文结合现代计算机技术以及自动化技术,设计了一款无人职守的直流电源监控系统。该系统采用集中管理、独立控制的模块化

  设计,具有“遥测、遥信、遥控、遥调”功能,

  易于实现电力系统综合自动化,是传统直流电

  源监控系统的新一代替换产品[3]。

  作者简介:王波(1987),男,工学硕士,主要从事工业自动化的研究;包林杰(1982),男,工学学士,主要从事工业自动化的研究;朱大卫(1984),男,工学学士,主要从事工业自动化的研究。

  1 直流电源监控系统

  本直流电源监控系统采用集中管理,独立控制,主要适用于20~200AH单电单充系统,可实现24节电池巡检和30路支路绝缘监测。系统由综合监控模块、电池巡检模块、绝缘监测模块、充电模块以及上位机显示控制模块组成,其中电池巡检、绝缘检测通过RS485接口与综合监控模块联机。该直流电源监控系统采用集中一体式加扩展单元的组合结构,接线简单,安装方便。其结构如图1所示。

  

  

  图1 系统结构框图

  Fig.1 Overall configuration of system

  2 综合监控模块

  综合监控模块是直流监控系统的神经中枢,其采用知名公司的真正工业级32位处理器作为主控芯片,能够最大限度地提高系统的可靠性和运行速度。综合监控模块经RS-485接口对其他模块进行集中管理控制[4]。其中电池巡检模块、绝缘监测模块分别将监测到的单体电池电压、温度及母线电压、支路绝缘电阻等信号通过RS485接口发送给综合监控模块。综合监控模块根据内部预先设定的报警值进行比较产生报警信号并记录报警的起始与结束时间。另外综合监控模块可根据电池组电流大小自动进行均、浮充管理,从而大大延长了蓄电池组的使用寿命。

  此外综合监控模块本身可监测8路系统开关量状态,三相交流输入电压、合母/控母的电压、电流以及母线绝缘状态。

  3 电池巡检模块

  蓄电池作为备用电源与整个直流供电系统的可靠性密不可分,因此保证蓄电池的正常运行是整个直流电源系统的首要任务[5]。本文通过电池巡检模块对电池组中每节电池的端电压、电流、温度进行巡检,并将结果通过RS485总线传送给综合监控模块。若某一节蓄电池电压低于或高于指定值,则由综合监控模块发出报警指示,并自动进行必要的操作;若电池组电流过高,则指示充电模块停止充电;若电流过低,表明该蓄电池的性能变差或过度放电,则指示充电模块进行充电。从而能够对电池进行维护,延长电池使用寿命,确保系统安全可靠运行。本电池巡检模块最多可检测24节单体电池电压,可分别检测2、6、12V单体电池,测量精度为0.2%,其原理如图2所示。

  

  图2 电池巡检模块原理框图

  Fig.2 Diagram of the module of battery inspection

  在对单体电池电压进行测量时,因系统中蓄电池多采用串联结构,其输出电压高达250V,所以输入通道的多路转换是一个难点。目前常用的多路转换方法:电阻分压法和继电器隔离法。继电器隔离法操作简单,给每个电池配一个继电器,当要检测某节电池时,打开该继电器即可。控制继电器应使用译码器,保证任何时候只有一个继电器导通[6]。由于普通机械继电器的使用寿命有限(不超过10万次),远远不能满足蓄电池巡检装置的要求。所以选用了光继电器对每节电池进行隔离,其结构如图3所示。

  

  

  图3 电压检测示意图

  Fig.3 Diagram of voltage monitoring

  在电池巡检模块中,对每一节蓄电池配置一光继电器,由CPU控制其关段,正常情况下光继电器处于断开状态,当要对电池进行巡检时,每次只将一节电池接入采样电阻,然后将采样信号送入运算放大器最后再由电池巡检仪进行运算处理,从而得到蓄电池电压。

  4 绝缘监测模块

  直流电源系统的常见故障是一点接地,在一般情况下一点接地并不影响直流系统的运行,但如果不能迅速找到接地故障点并予以修复,又发生另一点接地故障就可能会发生最大事故,所以对直流系统绝缘状况进行实时监测,出现接地故障时及时排除是非常必要的[7-9]。

  本绝缘监测模块具有检测30路支路绝缘电阻的功能,测量精度为±0.3KΩ,同时还能检测母线(合母、控母和母线负)对地电压,测量误差为±0.4V。绝缘监测模块将监测到的对地电压值和对地电阻值通过RS485总线发送给综合监控模块,并由综合监控模块作出相应处理。其原理如图4所示。

  

  

  图4 绝缘监测模块原理框图

  Fig.4 Diagram of the module of insulation monitoring

  对于检测绝缘电阻,国内外主要有“电桥平衡法”、“低频探测法”、“检测支路漏电流法”等几种方法。本文采用检测支流漏电流的方式来判断绝缘电阻,无需在支路上注入交流小信号,因而不对直流系统产生任何影响,其原理如图5所示。

  

  图5 绝缘监测示意图

  Fig.5 Diagram of insulation monitoring

  图5中,HL1、HL2、HLn表示接在各个供电支路上靠近直流电源监控系统开关处的霍尔电流传感器,若该支路无漏电流即该支路无接地时,流过传感器正负支路上的电流大小相等,方向相反,则对应支路上的霍尔电流传感器无输出。当某一段支路出现故障,如图中n号支路正极上某一点接地,则电流从直流电源正极经过接地电阻RL到地,再由地到电源负极,形成一漏电流IL,IL从地到直流负极流经的是分布参数,若有N条支路,则流经每一条支路的电流近似为IL,因而从位于N号支路的霍尔电流传感器可检测到电流的大小约为IL

,这样根据U+,U-和IL的数值,就可得到接地电阻的大小,再根据霍尔传感器输出电压的正负,就可以判断接地故障所在线缆的极性[10]。

  5 结语

  本文介绍的这种直流电源监控系统,在总体上具有功能强、结构开放灵活、实时性好、可靠性高等优点,每个环节均采用最先进技术,反映了当前直流电源监控系统的发展趋势,具有十分广阔的应用前景。

  文章来源:《电工电气》 2014年 第5期

  参考文献:

  [1] 邹甲,王礼帅,乔黎,等 .电力直流屏用智能充电电源的研制 [J].电源世界,2008(5):32-35.

  [2] 吕志宁,杨忠亮,变电站直流监控系统的实现[J],广东电力,1999,12(3):13-15.

  [3] 李利森,徐彦.电力系统用微机监控直流电源[J].电源技术应用.2001.4(7):347-350.

  [4] 王新,杜庆楠,陈立香,崔景岳,变电站直流系统微机监测控制装置的研究[J],焦作工学院学报,1999,18(5):372-375.

  [5] 马福舟,杨顺江,徐莉,董克俭.分散式直流屏蓄电池监控系统[J].电源技术.2008(5):69-70.

  [6] 吕勇军,智能蓄电池在线监测仪的设计[J],国外电子元器件,2001(9):55-57.

  [7] 徐天奇,蔡骏峰.直流系统接地故障判断和定位装置的设计[J] .仪表技术,2011(12) :7-8.

  [8]君怀,陈怡欢,直流绝缘监测的应用与发展[J],高压电器,2000,36(6):47-49.

  [9]向小民,胡翔勇,曾维鲁,高学军,直流系统绝缘监察装置[J],中国电力,1999,32(8):38-39.

  [10]周振雄,张艳萍,变电站直流系统接地检测仪的研制[J],北华大学学报:自然科学版,2001.2(1):84-88.

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭