当前位置:首页 > 电源 > 电源-能源动力
[导读]介绍了一种基于I2C总线接口的多功能串行芯片X1288的性能特点和工作原理,给出了X1288在电子电能表设计中的应用方法,同时给出了 X1288和AT89C52的连接电路。实际应用表明:X

介绍了一种基于I2C总线接口的多功能串行芯片X1288的性能特点和工作原理,给出了X1288在电子电能表设计中的应用方法,同时给出了 X1288和AT89C52的连接电路。实际应用表明:X1288能简化电路设计并可提高硬件的工作效率。 关键词:X1288;I2C总线接口;电子电能表 1 引言 X1288是美国Xicor公司生产的一种集E2PROM、实时时钟、日历、CPU监控和两路报警于一体的多功能集成电路芯片。X1288的时钟采用一种价格低廉的32.768kHz晶振,具有百分秒、秒、分、时、日、月、年及星期信息,并可设定两个报警时间,其时钟和报警寄存器的双通道结构使得它能在读写数据时仍保持时钟的准确性。此外,X1288还可提供32k字节的E2PROM阵列,并具有电源和CPU监控功能。 X1288串行芯片一般采用I2C总线来实现与主控制器的数据交换。I2C是由Philips公司开发的一种用于内部IC控制的双向二线串行总线,通过该总线可很好地解决现代电子系统中众多IC之间,及IC与外界的通信需要,并可大大简化电路设计,提高硬件电路的工作效率。 2 X1288的引脚定义


X1288芯片具有16脚SOIC或14脚TSSOP小体积封装形式。图1为14脚TSSOP封装的引脚示意图,各引脚的定义如下: X1、X2:这两个引脚可分别用作片内振荡器的反相放大器的输入和输出端。应用时需外接一个32.768kHz的石英晶体,其作用是为系统时钟/振荡器提供时间基准。 RESET:复位信号输出端。当看门狗超时或电压跌落到固定的VTRIP门限时,此引脚将向主处理器发送一个低电平有效的漏极开路输出信号,以使电路系统快速复位。 SDA:串行数据端,为漏极开路输出的双向引脚,用于数据的输入输出。实际应用时需接上拉电阻,并应与其它漏极或集电极开路输出端线相或。该端的输入缓冲器总是处于激活状态,输出电路可通过一个斜率控制的下拉控制输出信号的下降时间。设计时通常把电路设计成400kHz的二线接口。 SCL:串行时钟端口。 PHZ/IRQ:可编程频率/中断输出端。当编程为频率输出时,该端接到内部振荡器的输出脚,以输出频率为32.768kHz、4096Hz或1Hz的信号,也可以无信号输出。当编程为中断输出时,该端可在报警发生时激活,以向主机请求中断。


VBACK:备用电源输入端。当VCC小于VBACK-0.2V时,电源控制电路将切换至VBACK供电;而当VCC超过VBACK时,又会自动切回VCC供电方式,图2所示是其电源控制过程示意图。 3X1288的主要寄存器及其功能 X1228中的时钟/控制寄存器(CCR)位于从E2PROM阵列中分离出来的一个区域,地址位于[000]0h~[003]Fh之间。CCR一般被分成5段,可分别用于状态寄存器(1字节)、实时时钟(8字节)、控制寄存器(4字节)、报警寄存器1和报警寄存器0(各8字节)。 3.1 状态寄存器(SR) 状态寄存器是易失性的,其地址是003Fh。表1所列是其命令格式,各命令字的具体含义如下: 表1 状态寄存器(SR) 地址名称 7 6 5 4 3 2 1 0 缺省值 003Fh SR BAT AL1 AL0 0 0 RWEL WEL RTCF 01h BAT:后备电源标志位。当BAT为“1”时,表明器件在使用后备电源。 AL1、AL0:报警选择位。X1288中有两个报警寄存器,若其中的某一报警时间与实时时钟相同时,相应的AL1或AL0位将变为“1”;当读取SR的值后,该位又变为“0”。 RWEL:时钟/控制寄存器(CCR)写入控制位。对CCR进行写操作时,必须先使该位为“1”。 WEL:CCR和E2PROM的写入控制位。在对CCR和E2PROM进行写操作时,必须先使该位为“1”。同理,如果要写入时钟和控制寄存器,也必须先写“02h”至SR(使RWEL为“1”),再写“06h” (使WEL为“1”)。 RTCF:掉电标志位。当全部电源(包括VCC和VBACK)失效后,该位变为 “1”;而在系统再次上电后,如果要对RTC进行第一次有效写操作,则应首先将使该位为“0”。 需要说明的是,虽然SR中的第3、4位没有使用,但这些位必须置“0”。 图4 3.2 实时时钟(RTC) 实时时钟寄存器的地址0030h~0037h分别对应秒、分、时、日、月、年、星期和百分秒,并采用BCD码表示。通过启动一条读命令并确定相应的地址,即可读取时间信息。因为时钟是连续运行的,而每次读操作都需要一定的时间,这就有可能在读操作过程中使时间发生改变。本器件是由读命令将时间锁存在分立的锁存器中,因而可以避免读操作过程中时间发生变化。当一次读出并不是由读操作引起时,系统将发出报警。 可以通过向RTC寄存器中写入数据来设定时间和日期。通过一次不完全连续的写操作可避免改变当前时间,在RTC数据输入字节之前的ACK位时,时钟的下降沿会将当前的时间值装载到分立的缓冲器中,以使时钟继续运行。而此时新的串行输入数据将取代缓冲器的值。当有效的写操作结束后,系统产生停止位时,这个新值才被装载到RTC寄存器中。向RTC写入单个字节并不对其它字节的数据产生影响。 当X1288在VCC和VBACK都失效以后,即使再次上电后,其时钟也将停止增加,直到在时钟寄存器中进行至少一个字节的写操作以后。 读出和设定时钟应注意:百分秒寄存器(SSEC)是只读的;小时寄存器(HR)中的MIL位是12/24时制选择位?“1”为24时制,“0”为12时制?,H21位是AM/PM标志位?“1”代表PM,“0”代表AM?;星期中的七天只用三位(DY0~2)来计数,其值在0~6之间循环,数字所代表星期中的哪一天可由设计者决定,缺省值为0。 3.3 控制寄存器 表2所示是4个控制寄存器的命令字列表,其中的DTR是数字化微调寄存器,它的作用是调整每秒的计数值和ppm误差,以便在长时间内获得更好的计时精度。DTR2是符号位,“1”为正补偿,“0”为负补偿;DTR1、DTR0可分别提供10ppm、20ppm的补偿。由DTR0~DTR2三位可表示-30ppm~+30ppm的补偿范围。 表2 控制寄存器 地址名称 7 6 5 4 3 2 1 0 缺省值 0013h DTR 0 0 0 0 0 DTR2 DTR1 DTR0 00h 0012h ATR 0 0 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0 00h 0011h INT IM AL1E AL0E FO1 FO0 只读只读只读 00h 0010h BL BP2 BP1 BP0 WD1 WD0 只读只读只读 00h ATR寄存器用来微调X1和X2之间的片内负载电容,其范围从+116ppm~-37ppm,具体电容值的大小可由下式计算: CART=[(ATR的十进制值)%26;#215;0.25]+11.0pF 实际上,数字和模拟结合起来的微调范围可高达+146ppm。BL中的BP2~BP0位是块保护位,这些位可用来决定对E2 PROM阵列中8个保护段的某些具体段提供写保护(参见表3所列);WD1、WD0用来设置看门狗时限。 表3 块保护位与E2PROM阵列保护区 BP2 BP1 BP0 被保护的地址阵列中被锁部分 0 0 0 无无 0 0 1 6000h~7FFFh 高端1/4 0 1 0 4000h~7FFFh 高端1/2 0 1 1 0000h~7FFFh 全阵列 1 0 0 0000h~007Fh 第一页 1 0 1 0000h~00FFh 第二页 1 1 0 0000h~01FFh 前四页 1 1 1 0000h~03FFh 前八页INT是中断控制和频率输出寄存器,其中AL1E和AL0E是报警中断信号(IRQ)的输出使能位,这两位分别结合SR中的AL1和AL0,可用来指示报警是否发生;IM是脉冲中断方式控制位,当报警条件匹配时,IRQ将输出一个单次脉冲,若IM设为“1”,则脉冲输出是周期性的;FO1和FO0是频率输出控制位,主要用于选择内部振荡器的三种分频输出之一并在PHZ端输出。 3.4 报警寄存器 X1288有两个报警寄存器,地址分别在0000h~0007h和0008h~000Fh,通过这两个报警寄存器可设置两个报警时间。报警寄存器的内容与RTC很类似,不同之处在于其最高位被设置为使能位,而取消了HR中的12/24时制控制位。使能位规定了哪些寄存器可用来与实时时钟寄存器作比较。通过设置EMOn位并结合其它使能位和特定的报警时间,用户可以建立在每年的同一时间(精确到秒)触发一次报警。用户可以通过轮询AL0和AL1软标志来确定一次报警的发生,或者使能IRQ输出作为一个硬件报警标志。当所有的使能位都被设置成“0”时,整个系统无报警。 4I2C总线数据传送方式 X1288在应用时一般作为从器件通过串行I2C总线来实现与主控制器的通信。其中,SDA用来接收、发送数据;SCL用于接收产生的同步脉冲,当SCL为低时,SDA上的数据发生变化,为高时表明可以接收SDA上的数据。 I2C总线在SCL为高且SDA线上出现一个下降沿时启动;而在SCL为高且SDA线上出现一个上升沿时停止。启动和停止信号都由主控器产生,这样,总线上带有I2C接口的器件就能很容易地检测到这些信号。但对于不具备这种接口的单片机来说,为了能够准确地检测到这些信号,必须保证在总线的一个时钟周期内对SDA线至少进行两次采样。 I2C总线上的应答信号是用于表明数据传输成

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭