当前位置:首页 > 显示光电 > 电源-LED驱动
[导读]液晶显示器的驱动方法有:静态驱动法、动态驱动法、双频驱动法等。本文仅就目前应用最广泛的动态驱动法加以说明。以点阵式液晶显示器为例对其动态驱动法作以介绍,给出了一种克服交叉效应的办法。

液晶的显示是由于在显示像素上施加了电场,这个电场是显示像素前后两电极上的电位信号的合成。由于直流电场容易使液晶的寿命降低,因此,一般都只建立直流成分非常小的交流电场。直流分量通常小于50mV.液晶显示器的驱动通过调整施加在液晶显示器电极上的电位信号的相位、峰值、频率等建立驱动电场以实现显示。

动态驱动法

当液晶显示器显示的像素众多时,如点阵型,为了节省庞大的硬件驱动电路,液晶显示器电极的制作与排列做了加工,实施了矩阵式结构:即把水平一组显示像素的背电极都连在一起引出,称之为行电极;把纵向显示像素的段电极都连在一起引出,称之为列电极。显示器上每个像素都由其所在行列位唯一确定。液晶显示器的动态驱动法就是循环地给行电极施加选择脉冲,同时给所有的列电极加上响应的选择或非选择的驱动脉冲,从而实现某行所有像素的显示功能。这种扫描是逐行顺序进行的,循环周期很短,使得液晶屏上呈现出稳定的图像。

在一帧中每行的选择时间是相等的。假设一帧的扫描行数为N,扫描时间为1,那么一行所占有选择时间为一帧时间的1/N.这就是液晶显示驱动的占空比系数,也称为占空比。

克服交叉效应

在动态驱动方式下,要使某一位置如(i,j)点显示,就需在第i列和第j行上同时施加选择电压,使该点的变电场强最大,但此时除(i,j)点外,第i列和第j行的其余各点也承受了一定电压,这些点称为半选择点。若半选择点上的有效电压大于阈值电压时,在屏幕上将出现不应有的显示,使对比度下降,这就是交叉效应。解决交叉效应的办法是平均电压法,即把半选择点与非选择点的电压平均,适度提高非选择点的电压来抵消半选择点上的一部分电压,使半选择点上的电压下降,从而提高显示对比度。现以图1说明之:

 

 

图1中选择点为(SEG1,COM2),以下简称为(1,2)。现第2行施加V1电压,其余各行电压0V;第一列施加-V2电压,其余均为非选择电压1/a'V1.接下来分析各点的电位差,即行电压减去列电压。

选择点:(1,2):V1+V2

半选择点:(1,1),(1,3),(1,4):V2(2,2),(3,2),(4,2);V1-1/a'V1

非选择点:-1/a'V1

为保证选择点的显示效果,使V1+V2=VLCD保持在所需的电压值VLCD.同时为了提高显示的对比度,令|V2|=|-1/a'V1|,即:

 

 

解之:

 

 

令:a'+1=a,得:

 

 

于是,图1中各点电压为:

选择点:(1,2):VLCD

半选择点:(1,1),(1,3),(1,4):(1/a)VLCD(2,2),(3,2),(4,2):[(a-2)/a]VLCD

非选择点:-(1/a)VLCD

可见,行半选择点和非选择点上的电压均为显示电压VLCD的1/a.这1/a就称为偏压系数,也称为偏压。此方法称为1/a偏压的平均电压法,简称为 1/a偏压法。在这种方法中,MAX{[(A-2)/a]VLCD,(1/a)VLCD}将成为调整显示对比度的尺度。当扫描行数N=1时,动态驱动法就等于静态驱动法。

动态驱动法的应用实例

笔者在进行酒精浓度检测仪显示方式的选择过程中,通过多方调研考察,最终选用了香港精电公司生产的VM807-2型8位码段型(7段)液晶显示器。这除了因为液晶显示器耗电极微之外,还因为我们采用的MCU(PIC16C924)本身已具有LCD的驱动能力,因而,不论从降低成本考虑还是从简化电路方面考虑,这样的选择无疑是比较合理的。下面我们将针对MCU中LCD模块的具体运用加以说明。

LCD模块的配置

1、对LCDCON寄存器的配置

LCDCON寄存器如图2所示:

 

 

其中:LCDEN:LCD模块使能;SLPEN:休眠模式使能;VGEN:内部电压产生使能;CS1:CS0:LCD时钟选择位,“00”=Fosc/256,Fosc=4MHz;LMUX1:LUMX2:公共端数目与偏置选择,“10”=3公共端,1/3偏置。

我采用的配置码为:10000010.

对LCDPS寄存器的配置

LCDPS寄存器如图3所示:

 

 

其中:LP3:LP0帧时钟分频选择位[!--empirenews.page--]

我采用的配置码为:***0011,其中“*”代表“0”或“1”.

依据帧频率计算公式,帧频率为:

CLOCk source/96(LP3:LP1+1)

=4×106/96×(3+1)×256

=40.69Hz

2、像素控制

像素由像素寄存器的第一个状态位唯一确定。LCD模块共有16个像素寄存器,最多可控制4×29=116个像素。我们采用的LCD共有8×8=64个像素。因此,像素数据寄存器是足够用了。LCD的像素数据寄存器如图4所示:

 

 

位7:位0:SEGSCOMC表示控制像素数据的段码和公共端数。其中,下标“S”表示“0~32”个段码,下标“C”表示“1~4”个公共端。寄存器位为“1”表示打开像素(黑);寄存器位为“0”表示关闭像素(亮)。

3、段码使能

段码的使能通过LCDSE寄存器来实现。因为VIM807-2是8位7段显示器,而我们选择的是1/3占空比(即3个公共端),因此,通过LCDSE寄存器必须选择3×8=24段才能满足需要,即表达完全部的码段像素。当然会有多余,8×9=72,因为每3公共端和3段可以表达9个像素。公共端和段选择方式如图5所示。

 

 

LCDSE寄存器如图6所示:

 

 

各位所代表的意义分别是位数、引脚功能、3COM时管脚控制段数以及选择的控制段。根据上述,LCDSE的控制码为:00111011.

4、LCD驱动电压的产生

LCD驱动电压的产生有两种办法,内部充电泵法或者外部梯形电阻网络法。由于LCD充电泵正处在发展中,为了使设计风险减小,我们采用较为成熟的外部梯形电阻网络法。使用外部梯形电阻网络时,VGEN(LCDCON<4>)应清零。

5、LCD模块配置程序

……

MAIN BCF STATUS,PRO

BSF STATUS,RP1

MOVLW 0X82

MOVWF LCDCON

}

MOVLW 0X03

MOVMF LCDPS

MOVLW 0X3B

MOVWF LCDSE

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭