当前位置:首页 > 工业控制 > 工业控制
[导读]MEMS产品早在1980年就已经存在了,与使用了CMOS工艺的一般半导体相比,因为晶圆制成非常复杂,包装也很耗功夫,使得工程标准化和低成本变得十分困难,所以只应用于限定用途。但是,最近确定了批量生产小型、高性能的

MEMS产品早在1980年就已经存在了,与使用了CMOS工艺的一般半导体相比,因为晶圆制成非常复杂,包装也很耗功夫,使得工程标准化和低成本变得十分困难,所以只应用于限定用途。但是,最近确定了批量生产小型、高性能的MEMS产品的技术,除了汽车发动机控制、医疗器械、喷墨打印机这些常用用途,数码相机和智能手机这写 随身携带的电子产品里也使用了很多的MEMS产品。MEMS产品今后将持续每年10-15%的增长率,并可预测在2017年的时候将从现在的9200亿日元增长到17000亿日元。(Yole Development公司预测)

近年来,使用MEMS技术的半导体产品的需求及用途大幅增加。MEMS是Micro Electro Mechanical Systems的缩写,硅电路板上由电路和机械可活动结构的三维构成。使用此结构可实现将压力、温度、加速度这些物理量转换成电气信号的传感器,还可实现提供电气信号使可动结构体像机械一样运动的所谓执行器功能。

株式会社村田制作所在2012年1月份收购了芬兰的MEMS专业生产商VTI,VTI改名为Murata Electronics Oy,成为了村田的一员。Murata Electronics Oy运用了独特的3D-MEMS(三维MEMS)技术向市场提供了高性能以及高可靠性的MEMS传感器

村田制作所的MEMS传感器

所有东西的运动都是X、Y、Z轴平行的运动和围绕轴的旋转运动,共表现为6个运动组合。

村田制作所制作了平行运动(平移加速度)传感的加速度传感器、旋转运动(角速度)传感的陀螺仪产品系列,应用于依赖高精度运动传感和高可靠性的特征的汽车、轮船的姿态控制、产业用装置的倾斜测定、医疗用途等等。

此次特辑将介绍生产具有高精度、高可靠性的传感器的独特技术的3D-MEMS和同时兼具高精度和高可靠性的加速度传感器以及陀螺仪的特征。

3D-MEMS技术

使用了3D-MEMS技术的元件示例说明(图1)。MEMS元件是由可移动部构成的硅晶片和夹在部上下用于结合、密封的CAP晶圆构成。可移动部的纺锤和梳型电极框架用弹簧支撑、纺锤和梳型电极的运动通过CAP晶圆间或者梳型电极之间的电容值的变化来进行检测。村田制作所将凝聚了实现了高精准度检测的3D-NEMS技术的平台扩大到所有产品中,使得有可能为具有稳定性和高信赖性的传感器提供一个合理的价格。一下介绍3D-MEMS技术的强大特征。

实现高度绝缘、低寄生电容的独特的VIA结构

从MEMS结构部分的引出电极最早作为VIA结构进行量产。硅形成的引出电极的间为玻璃绝缘的独特VIA结构,同时实现了电极间的高绝缘电阻和低寄生容量、为传感器的高精度化、高稳定性、低消耗电流的实现做出了巨大的贡献。此外,在任何场所都可能实现电极导出的VIA的结构,为允许元件的设计自由度和元件的小型化做出了贡献。

高精度的空间控制技术创造出高感度和小型化

3D-MEMS结构的另一个重点是,可移动部两者间形成2.5µm的狭小空间、使高精度的容量测量成为可能。通过高精度的抛光蚀刻技术,实现了达到极限的增高的晶圆的平坦性和后述的高精度的晶圆结合技术。这个技术可高精度检测出移动部的上下方向移动,为元件的高性能化和小型化做出贡献。

实现高可靠性的原子级密封

可移动部和CAP晶圆通过玻璃和硅的阳极结合或者硅和氧化硅的直接结合在晶圆级结合。无论哪种接合,都是为了加强固定原子之间的接合,为纺锤运动空间的空气密封以及高可靠性做出了贡献。另外,一般的晶圆接合中,以元件为单位的接合不良情况时有发生,我公司运用多种方式对所有产品进行严格检查,只有合格的产品才可出货。

 

 

图1:3D-MEMS技术特征

高精度、高可靠性是MEMS结构设计中一贯彻底坚持的。下面将列举加速度传感器和陀螺仪的设计,并且介绍其中的一部分。

加速度传感器

加速度传感器的原理是用弹簧支撑的纺锤随着加速度而运动,将这种运动和纺锤体之间的容量值的变化以电气形式检测出来。我公司用了4个纺锤的独特结构才实现此功能。对于使用了4个纺锤所测量出的X、Y、Z3个轴的加速度情报,可以得到其中一个自由度最大的情报。通过这个自由度可实现平时的自我诊断功能。因此,高信赖性已经成为必要的车载传感器的必要条件。

 

 

图2:加速度传感器元件的结构

 

 

 

 

 

 

图3:加速度传感器的特性图

陀螺仪

我公司的陀螺仪可以检测直线运动的物体在直行轴周围的旋转运动时所受的力=科里奥利力。科里奥利力很小,MEMS结构设计的重点在于怎样取消外在的干扰。同时,我公司还准备了很精彩的解决方案。

实现了高精度的独特结构在细弹簧上面绑上的两个纺锤进行逆向运动(图4右),纺锤4来获得情报(图4左)。通过演算这4个信号,去除所有方向的平行加速度、旋转加速度,能获得纯粹的科里奥利力。

 

 

陀螺仪

 

 

图4:陀螺仪的结构图

 

 

 

 

图5:陀螺仪特性图

组合传感器

特别在汽车市场,为了更高精度的控制,将陀螺仪信号和加速度传感器的信号组合起来的需求有很多。以此为背景,诸如防侧滑制动系统(ESC),防抱死制动系统(ABS)、轮胎压力检测系统(TPMS)此类的安全功能以发达国家为中心新车装载法制化正在被推进,电动驻车制动器(EPB)、坡道起步辅助系统(HAS)这样的新功能也陆续活跃起来。村田制作所将这两个传感器组合在一个传感器中,为了应对未来的新需求,我们将继续扩大产品的阵容。

 

 

组合陀螺仪传感器

 

 

图6:组合陀螺仪传感器结构图

结语

村田制作所的MEMS传感器高精度、高可靠性为必要用途进行设计和开发,这个想法不仅体现在本文介绍的制作过程和MEMS的设计中,还彻底贯彻于ASIC设计及包装设计中。其结果是,可以充分应对车、轮船、产业用设备和医疗用途等的严格要求。

MEMS今后可能将被适用于更广泛用途的高科技技术。村田制作所将MEMS作为将来领先技术的一种,持续向市场提供最高端的MEMS商品,不断强化开发体制和对客户的支持。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭