当前位置:首页 > 智能硬件 > 半导体
[导读] 今天,我将带领大家来个缩骨大法,将我们缩小到原子的尺度,来参观FPGA/ASIC的内部风景。新《旅游法》已经实施了,本次旅游绝无自费项目和强制消费,请诸位放心。各位游客,现在我们正沿着PCB数据大道,走向芯

今天,我将带领大家来个缩骨大法,将我们缩小到原子的尺度,来参观FPGA/ASIC的内部风景。新《旅游法》已经实施了,本次旅游绝无自费项目和强制消费,请诸位放心。

各位游客,现在我们正沿着PCB数据大道,走向芯片大厦----就是大家眼前的巨大的、银色的大厦。我是本次旅行的导游,敝姓十,大叫可以叫我十导。路途之中,为了大家不感到无聊,本人先给大家略略介绍一下,什么是数字电路的时钟

数字电路中,时钟是整个电路最重要、最特殊的信号。

第一:系统内大部分器件的动作都是在时钟的跳变沿上进行,这就要求时钟信号时延差要非常小,否则就可能造成时序逻辑状态出错。

第二:时钟信号通常是系统中频率最高的信号。

第三:时钟信号通常是负载最重的信号, 所以要合理分配负载。

好的,今天的参观,我们就从芯片的时钟树结果开始。由于上面介绍的特点,在芯片这类可编程器件内部一般都设有数量不等的专门用于系统时钟驱动的全局时钟网络,这种网络就叫做时钟树。

从顶端看下去,可以看到从相同的时钟管脚开始向下延伸,如同人类的血液系统,芯片中的时钟信号呗传递到各个寄存器。这个时钟,到达远端的寄存器,需要经过漫长的电路,所以片外的时钟芯片需要被锁定和增强,才能够驱动这数以亿计的寄存器。不仅如此,为了达到系统同步的目的,所有寄存器的时钟信号到达时刻允许的差别(时延,用洋文说就是skew)也需要特

别的小。还需要考虑信号的完整性问题。妈妈咪啊,这些看起来似乎很难。套用一句13年春晚里面的台词:幸好,我们不必操心这些。

话虽如此,如果你抱着“事不关己,高高挂起”的态度,乱设计系统的时钟的话,后端设计工程师绝对会带着刀子找你拼命的。不要叫别人打你个满脸桃花开,你才知道花儿为什么这样红。“本是同根生,相煎何太急”啊,兄弟。

大伙,随我来,将会看到四座巨大的雕像。这几座雕像以后现代解构主义的手法,表现了四种不同的时钟形式。

第一位是大名鼎鼎(小名吗不清楚)的全局时钟(Global Clock)。它是由片上的时钟管脚引入,经过锁相和放大之后,输出给寄存器的稳定、可靠的信号。这种时钟的时延被设计的最小,相对时延也最小。

图1(点击图片查看大图)

第二座是为了纪念数字逻辑设计里面愚蠢的时钟:门控时钟。这种时钟从一些信号经过组合逻辑产生,表面上看着一个字:美。但是,既然设计中连时钟的同步都做不到,难道组合逻辑的同步就那么简单吗?答案是:(做到同步)这个真的没有。于是,麻烦来了,这个组合逻辑的时钟,也会上窜下跳的了,整个一个孙猴。试问,这种时钟谁敢用?哪个艺高人胆大的,来试试?

图2(点击图片查看大图)

下来,为了体现IQ无下限,我们见到了第三座雕像:多级逻辑时钟。它不仅仅用了组合逻辑还加入了前级寄存器的输出。所谓,毛刺也无极限啊。哪个艺高人胆大的,想来试试?

图3(点击图片查看大图)

最后也是一个“英明”的设计:行波时钟。如同莫小贝的最爱----糖葫芦,上级寄存器的输出作为下级寄存器的时钟逐次传下去。理论上,行波时钟可以非常完美的运行下去。但是,在这里总是有但是的,但是,考虑到这些寄存器时间的时钟的时延控制的难度,我们不得不说:行波链上的时钟波动会变得极大,最终破坏整体时延要求,使得系统的整体工作时钟严重降低。

图4(点击图片查看大图)

有诗赞曰:芯片设计万万千,抓住时钟是关键。四大金刚长得帅,修得正果唯全局。

有的客人会说了:不是有多时钟系统吗?多时钟是有的,但是或者需要通过同步化,或者不同时钟系统之间需要某种隔离。这两个技术,在后面的讲座中,都是会遇到的。

下来,我们会进入时延实验室,免费体验一下信号的时延。下图是一个信号有全0变为全1的例子,可以看出不同阶段的信号变化时机不完全一致。只有后仿真的结果,才是与系统比较契合的。所以,如果只做前仿真,再快的时钟也是可以的。

图5(点击图片查看大图)

但是,如果在后仿真阶段,时钟快到了低于系统的处理时延,麻烦就来了。见下图,如果时钟上升沿在信号变化的中间,那么输出信号就不是”1111”而是”1011”。你就摊上事了,摊上大事了。另外,还有一点,信号的位宽越大,那么对应的处理时延和skew也会越大,这点很重要。

图6(点击图片查看大图)

各位游客,今天的旅行到此就结束了。欢迎下次光临。

责任编辑:Fgirl来源:EEFOCUS 分享到:
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭