当前位置:首页 > 电源 > 功率器件
[导读]全球知名半导体制造商ROHM近日于世界首家※开发出采用沟槽结构的SiC-MOSFET,并已建立起了完备的量产体制。与已经在量产中的平面型SiC-MOSFET相比,同一芯片尺寸的导通电阻可降低50%,这将大幅降低太阳能发电用功率调节器和工业设备用电源、工业用逆变器等所有相关设备的功率损耗。 另外,此次开发的SiC-MOSFET计划将推出功率模块及分立封装产品,目前已建立起了完备的功率模块产品的量产体制。前期工序的生产基地为ROHM Apollo Co., Ltd.(日本福冈县),后期工序的生产基地为R

※截至2015年4月23日ROHM调查数据

 

全球知名半导体制造商ROHM近日于世界首家※开发出采用沟槽结构的SiC-MOSFET,并已建立起了完备的量产体制。与已经在量产中的平面型SiC-MOSFET相比,同一芯片尺寸的导通电阻可降低50%,这将大幅降低太阳能发电用功率调节器和工业设备用电源、工业用逆变器等所有相关设备的功率损耗。

另外,此次开发的SiC-MOSFET计划将推出功率模块及分立封装产品,目前已建立起了完备的功率模块产品的量产体制。前期工序的生产基地为ROHM Apollo Co., Ltd.(日本福冈县),后期工序的生产基地为ROHM总部工厂(日本京都市)。今后计划还将逐步扩充产品阵容。

<背景>

近年来,在全球范围寻求解决供电问题的大背景下,涉及到如何有效地输送并利用所发电力的“功率转换”备受关注。SiC功率器件作为可显著减少这种功率转换时的损耗的关键器件而备受瞩目。ROHM一直在进行领先行业的相关产品研发,于2010年成功实现SiC MOSFET的量产,并在持续推进可进一步降低功率损耗的元器件开发。

京都大学 工学研究科 电子工学专业  木本恒畅教授表示:

“Si(硅)材料已经接近其理论性能极限。对此,ROHM公司率先发力采用可实现高耐压、低损耗(高效率)的SiC(碳化硅:Silicon carbide)材料的SiC功率器件,一直在推进领先全球的开发与量产。

此次,采用可最大限度发挥SiC特性的沟槽结构的SiC-MOSFET在全球率先实现量产,其成功意义非常巨大,是划时代的里程碑。该SiC-MOSFET是兼备极其优异的低损耗特性与高速开关特性的最高性能的功率晶体管,功率转换时的效率更高,可“毫无浪费”地用电,其量产将为太阳能发电用功率调节器和工业设备用电源等所有设备进一步实现节能化、小型化、轻量化做出贡献。”

 

<特点>

1.采用沟槽结构,实现低导通电阻功率器件

到目前为止,沟槽结构因在SiC-MOSFET中采用可有效降低导通电阻而备受关注,但为了确保元器件的长期可靠性,需要设计能够缓和Gate Trench部分产生的电场的结构。

此次,ROHM通过采用独创的结构,成功地解决了该课题,并世界首家实现了采用沟槽结构的SiC-MOSFET的量产。与已经在量产中的平面型SiC-MOSFET相比,导通电阻可降低约50%,同时还提高了开关性能(输入电容降低约35%)。

2.“全SiC”功率模块拓展

 

ROHM又开发出采用此次开发的沟槽结构SiC-MOSFET的“全SiC”功率模块。

该产品内部电路为2in1结构,采用SiC-MOSFET及SiC-SBD,额定电压1200V,额定电流180A。

与同等水平额定电流的Si-IGBT模块产品相比,其显著优势当然不必言说,即使与使用平面型SiC-MOSFET的“全SiC”模块相比,其开关损耗也降低了约42%。

<产品阵容>

・“全SiC”功率模块

 

 

・分立产品

ROHM将依次展开额定电压650V、1200V各3款产品的开发。额定电流将继续开发118A(650V)、95A(1200V)的产品。

<术语解说>

・MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor的简称)

金属-氧化物-半导体场效应晶体管,是FET中最被普遍使用的结构。

作为开关元件使用。

・沟槽式结构

沟槽(Trench)意为凹槽。是在芯片表面形成凹槽,在其侧壁形成MOSFET栅极的结构。不存在平面型MOSFET在结构上存在的JFET电阻,比平面结构更容易实现微细化,因此有望实现接近SiC材料原本性能的导通电阻。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭