当前位置:首页 > 电源 > 功率器件
[导读]库仑计数器能够测量流入或流出电池的电荷,而小的专用 IC 则可直接与约 20V 以下的中低电池电压相连。通过采用一个高电压放大器作为电平移位器,就能把测量电路的输入工作范围扩展至高得多的电压。LT6375 电压差动放大器具备一些可使该电路在极宽电压范围内准确工作的特性。

库仑计数器能够测量流入或流出电池的电荷,而小的专用 IC 则可直接与约 20V 以下的中低电池电压相连。通过采用一个高电压放大器作为电平移位器,就能把测量电路的输入工作范围扩展至高得多的电压。LT6375 电压差动放大器具备一些可使该电路在极宽电压范围内准确工作的特性。

库仑计数器的工作原理是测量一个检测电阻器两端的电压,把它作为必需进行积分运算之电流的指示。图 1 示出了当采用一款低电压库仑计数器 LTC2941 时的典型连接。重要的一点是:库仑计数器真实地测量电压,接着把它解译为电流,然后将之作为电荷报告。通过去除检测电阻器,并设法驱动库仑计数器之检测引脚两端的另一个电压,它将仍然把该电压解译为电流并报告一个累积电荷。

 

图 1:低电压库仑计数器 (比如 LTC2941) 有助于简化低电压测量

在图 2 中,LTC6375 的输出连接至库仑计数器的检测引脚。该 IC 是一款差动放大器,这意味着它是连接了高精度电阻器的运放,旨在实现差分输入电压的电平移位。差动放大器的运作将其输出电压驱动至一个按下式计算的数值:

OUT = REF + GAIN ×[(+IN) – (-IN)]

LT6375 驱动其输出引脚,但是 REF 引脚必须连接至一个低阻抗源。同样,LTC2941 期望在其 SENSE+ 引脚 (它也是用于该 IC 的电源引脚) 上有一个低阻抗源。可把 REF 和 SENSE+ 引脚均连接至用于 I2C 接口的同一个逻辑电源轨 (例如:3.3V)。通过把 LT6375 的 OUT 引脚连接至 SENSE– 引脚,LT6375 将把其输入之间的电压差加在 LTC2941 的输入两端。实际上,LT6375 充当一个假的检测电阻器。

 

图 2:一个增设的电压差动放大器扩展了可进行库仑计数的电压范围

差动放大器的准确度在很大程度上取决于电阻器匹配。虽然显而易见的是电阻器失配直接影响着增益准确度,但是不太明显且更加严重的问题则是这种电阻器失配将引起失调误差。1% 的电阻器失配将引起一个输出失调,该失调等于电路在其上进行电平移位之电压的 1%。

例如,一个电平移位至 3V 的 48V 输入将导致 450mV 的失调误差,对于此类测量来说该误差是太大了。LT6375A 规定了一个 97dB 的最小共模抑制比 (CMRR),这意味着一个 45V 的电平移位会引起一个小于 640μV 的失调。

当设计高电压电平移位电路时,至关紧要的是确保运放的输入处于其有效工作范围之内。就 LT6375 而言,电源引脚额定在高达 60V,因此在某些场合中,可采用被测量的电压为它供电。这是图 2 中示出的配置,在此配置中 LT6375 测量一个 48V 电源供应的电流。最后,该 IC 包括额外的高精度电阻器,这些电阻器可由外部引脚进行配置以分割输入共模范围,同时保持差分增益等于 1 倍。在图 3 中,辅助基准引脚全部连接至 5V 电源,这分割了 –42V 输入电压以将其置于运放的电源范围之内。对于其他的应用,LT6375 内部的运放具有一种独特的特性,凭借该特性其输入能够在高于电源引脚本身的电压条件下工作。把这些特性组合起来,就能设计可跨一个 ±270V 输入范围监视电源的电路。

 

图 3:通过把辅助基准引脚连接至 5V 电源以分割 –42V 输入电压可将输入置于运放的电源范围之内

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭