当前位置:首页 > 电源 > 功率器件
[导读]bq24700/bq24701是TI公司为笔记本PC专门设计的带动态电源管理(DPM)功能的电池充电控制器和选择器。

 摘要:bq24700/bq24701是TI公司为笔记本PC专门设计的带动态电源管理(DPM)功能的电池充电控制器和选择器。该器件利用期限动态电源管理和AC墙上适配器可自动调节电池的充电电流,从而可使电池的充电时间达到最短。文中介绍了bq24700/01的功能、特点和应用电路。

    关键词:充电控制器/选择器 DPM bq24700/01

1 概述

bq24700/bq24701是专为笔记本PC而定制的高集成度电池充电控制器和选择器。bq24700/1利用其动态电源管理(DPM)和AC墙上适配器来自动调节电池的充电电流,从而可使电池充电时间缩至最短,并可选用低成本的适配器。bq24700/1利用选择器可以选择电池或AC墙上适配器作为主系统电源。同时可利用300kHz的固定频率和PWM来精确控制电池的充电电流和电压。在对镍镉/镍氢电池和锂离子/锂聚合物电池组(包)充电时,充电电流精度为±4%。当对Li+电池充电时,充电电压精度可达±0.4%。器件中的PWM控制器适合于在墙上适配器电压高于电池电压情况下的降压变换器中使用。在电池过放电情况下,为了保护电池,bq24700/1可执行耗尽电池检测与指示功能。

2 引脚功能和推荐工作条件

bq24700/1采用24引脚TSSOP封装,引脚排列如图1所示。表1列出了它们的引脚功能。

表1 bq24700/01的引脚功能

引脚名称 引脚号 I/O

功        能

ACDET 1 I AC或适配器电源检测端。当该脚电压低于1.2V门限电时,器件进入睡眠模式,在睡眠模式下仅消耗15μA电流
ACDRV 24 O AC或适配器电源选择输出
ACN 11 I 适配器电流感测放大器负差分输入
ACP 12 I 适配器电流感测放大器正差分输入
ACPRES 2 O 开路漏极输出,用作指示AC电源的存在
ACSEL 3 I 该脚为逻辑低电平,选择电池;为逻辑高电平时,选择AC适配器作为系统电源
ACSET 6 I 用于在DPM发生时编程适配器电流
ALARM 19 O 枯竭电池报警输出
BATDEP 4 I 已耗尽枯竭的电池电平设定输入
BATDRV 23 O 电池电源选择输出
BATP 13 I 电流充电调整电压检测输入
BATSET 9 I 该脚电压>0.25V时,用作设定充电电平;该脚电压≤0.25V或接地时,内部电池误差放大器反相输入端连接内部1.25V(±0.05%)的参考电压
COMP 10 O 从反相端输入到PWM比较器,该端同时也是跨导(gm)放大器的输出
ENABLE 8 I 充电赋能
GND 17 - 电源地回复,公共参考
IBAT 14 O 电池电流差分放大器输出
PWM 21 O 栅极驱动器输出
SRN 15 I 电池电流感测放大器负差分输入
SRP 16 I 电池电流感测放大器正差分输入
SRSET 5 I 电池充电电流编程端,用于设定充电电流的限制电平
V 22 I 工作电源
VHSP 20 O 驱动外部MOSFET的电压源
VREF 7 O 5V、±0.6%的参考电压
Vs 18 I 系统(负载)电压输入脚

bq24700/1的推荐工作条件如下:

电源电压(Vcc):7~20V(选择器工作电压为4.5~20V);

ACN、ACP(11脚、12脚)输入电压:7~20V;

SRN、SRP(15脚、16脚)输入电压:5~18V;

PWM、BATDRV、ACDRV(21脚、23脚、24脚)输出电压:-0.3~20V;

1~5脚、8~10脚、13~14脚和18~19脚的输入或输出电压:-0.3~8V;

工作环境温度(TA):-40~85℃。

3 应用电路及工作原理

bq24700在笔记本PC充电管理中的应用电路如图2所示。电路的输入端连接AC墙上适配器,输出端连接笔记本PC系统。Q1(P沟道MOSFET)为充电器开关,Q2为适配器选择开关,Q3为电池选择开关。

3.1 电路工作原理

a.动态电源管理(DPM)

电池充电电流IBAT为适配器电流IADPT与系统电流ISYS之差,即IBAT=IADPT-ISYS。如果IBAT与ISYS之和超过适配器的电流限制,通过DPM功能可减小电池充电电流,从而使整个输入电流消耗保持在墙上适配器的限定容量之内。随着系统电流的减小,充电电流会相应增大,从而使电池充电时间缩短到最低限度。

DPM可通过电池充电来调节电压、充电电流和适配器,以使充电电流的三个控制环路进入PWM控制器。如果三个用户的编程门限有任意一个达到,相应的控制环路将命令PWM控制器减小占空因数,以减小电池充电电流。

b.AC适配器检测

IC的ACDET脚(1脚)通过外部电阻分压器来检测AC适配器的存在及其功率损耗。在应用电路中,由于R1连接于阻塞二极管D1的负极,故要求适配器电压VADPT≥18V(当VADPT<18V时,R1连接到D1正极)。当ACDET脚上电压低于内部比较器的1.2V参考电平时,IC将进入睡眠状态,PWM控制截止,Q2关断,Q3导通,从而选择电池作为系统电源。系统(负载)电压可通过VS脚上的电阻分压器进行监控,以便在Q2出现短路而适配器电源仍存在时,对系统电源提供保护。

c.电池充电操作

bq24700/1中的固定频率PWM控制器可用于为电池充电提供闭环控制。电池电压VBAT、电池充电电流IBAT和适配器充电电流IADPT三个控制参数,既可由键盘DAC或IC 5V参考电压外部的电阻分压器来进行编程,也可利用内部参考电压(1.25V)来编程。适配器电流和电池充电电流可分别利用低值电阻R5和R6来检测,并被反馈到IC内部相应的跨导(gm)放大器上。电池电压则通过R7和R9组成的分压器检测,并将检测信号反馈到IC内部的第三个gm放大器。

(1)电池充电电压设定

电池充电调整电压VBAT可利用R7和R9组成的电阻分压器并通过IC的BATP(13)脚反馈到电池误差放大器,只要BATSET(9)脚上的电压VBATSET大于内部0.25V的参考电压,电池充电电压便可设定为:

VBAT=[(R7+R9)/R9]·VBATSET

(2)电池充电电流设定

电池充电电流IBAT可由IC脚SRSET(5)上的电压VSRSET和传感电阻R6共同决定,公式如下:

IBAT=VSRSET/(25R6)

上式中,VSRSET的最大值为2.5V。该电压可通过来自VREF(5V)的电阻分压器获得,也可以从键盘控制器DAC得到。

图2 bq24700组成的笔记本PC电池充电器电路

    (3)适配器电流设定

适配器电流IADPT可通过IC脚ACSET(6)上的电压VACSET和适配器电流感测电阻R5来确定:

IADDPT=VACSET(25R5)

d. 电池耗尽检测

电池耗尽电平可由通过电阻分压器施加到IC脚BATDEP(4)上的电压来设定。当电池放电过量时,ALARM(19)脚会发出报警信号并输出高电平,而并不关心电源选择。

当电池电压低于已耗尽电平的80%时,被认为是电池深度放电。当电池耗尽时,bq24700仍会停留在已选择的电源上。但是,bq24701却会在电池耗尽时,自动切换到适配器电源。表2列出了两种器件的可用选择方式。

表2 bq24700/01的选择方式

条  件
TA=-40~85℃
选择器操作
bq24700 bq24701
电池作为电源
电池移开 自动选择AC适配器 自动选择AC适配器
电池重新插入 基于选择器
输入选择
当适配器
移开时选择电池
AC适配器作为电源
适配器移开 自动选择电池 自动选择电池
适配器重新接入 基于选择器输入选择 基于选择器输入选择
已耗尽的电池条件
电池作为电源 发送报警信号 自动选择适配器发送报警信号
AC适配器作为电源 发送报警信号 发送报警信号
报警信号有效
  耗尽电池条件 耗尽电池条件
  选择器输入不匹配于选择器输出

3.2 主要元件选择

a. MOSFET选择

MOSFET的选择取决于栅-源电压、输入电压和输入电流。P沟道MOSFET的栅-源耐压至少是20V,击穿电压BVDSS≈VIN+1V。平均输入电流的计算公式如下:

IIN(avg)=[(VOIO)×1.2[/VIN

有效值电流由下式确定:

IIN(RMS)=IIN(avg)(1/D)1/2

式中,D为占空比。

b. 肖特基二极管D1的选择

选择肖特基二极管D1时,要求D1必须能承受输入电压VIN。

c. 电感的选择

为防止电流斜坡太陡而导致过大的纹波,电路中电感器的电感值不能过小,推荐按下式选取:

L=[(VIN-VBAT)VBAT]/0.2fsIFSVIN

式中,fs为开关频率,IFS为开关电流。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭