当前位置:首页 > 电源 > 功率器件
[导读]这个最新设计实例介绍了一种以少量无源器件来设计简单的高频LC振荡器的方法。但为获得最佳结果,稳定振荡器的实际硬件设计需要更多的器件且更为复杂。

      这个最新设计实例介绍了一种以少量无源器件来设计简单的高频LC振荡器的方法。但为获得最佳结果,稳定振荡器的实际硬件设计需要更多的器件且更为复杂。图1显示一种具有自动电平输出幅度控制以及能提供具有较低谐波含量正弦波输出缓冲的18MHz稳定振荡器(参考文献2)。此外,本设计实例还用英飞凌科技公司(Infineon Technologies)的廉价BF998型双栅极 MOSFET 替换了原来的JFET振荡器,该双栅极 MOSFET可从 DigiKey 及其它公司购买。
  该电路的核心包括一个哈特雷(Hartly)振荡器Q1。为减小负载,用一个10kΩ的电阻器将Q1的源极输出耦合至源极跟随器JFET Q2的高输入阻抗栅极上。然后,Q2驱动BJT(双极型晶体管) 射极跟随器Q3,该跟随器反过来又驱动 BJT 放大器Q4。环形磁芯变压器T1将Q4的输出耦合至50Ω负载,以提供2.61Vp-p或12.3 dBm。Spice电路仿真预计有一个幅度低于基频35dB的二次谐波。二次谐波幅度超过所有更高次的谐波幅度,且示波器测量显示出50Ω负载两端的看上去很干净的正弦波
  为给放大器提供良好的端接并仍可获得7.3 dBm(1.47 Vp-p),例如,要驱动一个二级管环形混频器,您可以在输出变压器T1与负载之间插入一个 50Ω的 5dB垫片。电阻R2 用于调整射频输出电平,且为了提高稳定性,您还可以用低温度系数金属膜固定电阻器组成的固定电阻分压器来取代R2。Q4集电极的部分信号通过C7及R9驱动JFET源极跟随器Q5的栅极。二极管 D1对信号进行整流,该信号通过滤波后输入运放IC1的反相输入端。电阻器R1与低温度系数电位器R2将12V电源分路,来给IC1的正向输入端提供一个直流参考电压,并设定输入信号的电平。滤波后,IC1的直流输出驱动Q1的栅极2,以设定器件的增益进而控制射频输出。


  可用连接至线圈L1中心抽头的微调电容C18来精确调整振荡器的频率。如果频率稳定性的降低程度可以接受,则可以用低成本的陶瓷微调器来代替C18。活塞型微调器价格相当昂贵且不如陶瓷微调器容易得到,但典型陶瓷微调器所展现出的温度系数至少要比活塞型微调器差一个数量级。为使振荡器在18MHz以外频率下工作,可将 L1的电感与C12、C13、C16、C17及C18增大18/fOSC2倍。其中,fOSC2为新的MHz频率。调整Q1源极连接的抽头,以便将其保持在从电感接地端开始的线圈总数的大约 20% 处。
  您可以用一个13pF的电容器来代替由 C12及C13组成的串联电容器组,并可用一个2.5pF的电容器来代替C14与C15。如果您想要重新设计电路以获得不同输出频率,则可调整C14与C15或其单个电容器替换的电容值,以得到足够的电容量来确保在所有预期工作条件下能可靠地启动。但还应注意,使用两个电容器C16和C17与使用温度稳定(NP0 特性)的陶瓷介质电容器C12至C17一样,有助于减少启动漂移。缓冲放大器Q2至Q4需要进行改动,以便在大约 25 MHz以上的频率工作。
  经过良好调整的外部直流电源(图中未绘出)可为电路提供 12V、-12V及8V 电压。为维持高度稳定并保持 Q1的 12V 最大漏-源电压指标,振荡器只能使用8V电源。在22℃恒定环境温度下并使用规定元件,在经过最初10分钟预热后,振荡器频率在1小时内的平均漂移速率为每分钟-2~-3 Hz。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭