当前位置:首页 > 电源 > 功率器件
[导读]摘要:最近,对带有同步整流电路的有源箝位ZVS-PWM控制串联谐振变换器的研究和应用不断取得进展。不过,当输入电压偏离特定值时,其效率会严重下降。通过对其各种工作模态转换的分析,阐明了效率下降的原因。为解决

摘要:最近,对带有同步整流电路的有源箝位ZVSPWM控制串联谐振变换器的研究和应用不断取得进展。不过,当输入电压偏离特定值时,其效率会严重下降。通过对其各种工作模态转换的分析,阐明了效率下降的原因。为解决这种效率下降,使用了带有分立电感和耦合电感的倍流型同步整流电路模型,并分析了其稳态特性。通过实验,比较了中心抽头型和耦合电感型效率变化曲线。最后,通过分析和比较,得出结论。提出了一个整流电路,在较大输入电压范围内和低输出电压,大输出电流的负载条件(3.3V,5A)下获得了85%的较高效率。

 

关键词:有源箝位;串联谐振;同步整流EfficiencyImprovementofSynchronousRectifierina

ZVS?PWMControlledSeries?ResonantConverterwithActiveClamp


 

 


1引言

开关变换器在很多电子和通信设备的电源中得到广泛应用。近来,低输出电压和大输出电流的负载条件对开关变换器提出了新的要求。为了满足这些要求,很多类型的谐振变换器已被提出和利用。然而,这些变换器的输出电压通常由开关调制频率所控制。因此,这导致了诸如最小开关频率限制了输出滤波电容减小等问题。为了消除这些限制,一种新颖的带有源箝位电路ZVS-PWM控制的电流模式谐振变换器被提了出来[1,2]。这种变换器工作在一个固定的开关频率,其输出电压通过主开关管的PWM控制信号来调节。其稳态特性和ZVS条件在相关文献中有详细的讨论[3~5]。但是,这种变换器在特定的输入电压下有较高的效率,当输入电压偏离特定值时,效率会严重下降。

本文通过对这种变换器的各个工作模态转换的分析,说明了其效率下降的原因。通过分析可以说明,当输入电压偏离特定值时,发生了环流现象,导致了能量的回馈,效率下降。为解决这种问题,使用了一种倍流型同步整流电路,它带有分离电感或耦合电感两种方案。这种整流电路在较大输入电压范围和低输出电压、大输出电流的情况下获得了85%的效率。

2带中心抽头同步整流ZVS?PWM控制的串

联谐振变换器

带中心抽头同步整流ZVS?PWM控制的串联谐

 

 


图1具有中心抽头同步整流电路的有源箝位ZVS?PWM控制串联谐振变换器

 

 


图2图1所示变换器的关键波形

 

 

 

 

 

有源箝位ZVS?PWM控制串联谐振变换器中提高同步整流效率的研究

 

 


振变换器的电路拓扑如图1所示,其重要参量的波形见图2。电路设计参数值见表1。

表1变换器参数值Vin48V
CA1μF
LA73μH
S1,S2IRF540
Lr23.76μH
Cr33.4μF
谐振频率(1/2π)(LrCr)-1/2178kHz
开关频率fs200kHz
匝比n13
S3,S4MTP13N50/
Co220μF
图2中,有源箝位电路和主开关管产生方波电压,其幅度随主开关管的占空比变化。这一幅度调制输入电压被加在由Lr和Cr组成的串联谐振电路上。开关频率被选在稍高于谐振频率处。由于串联谐振电路有一很高的品质因数,所以,电流的基波部分通过谐振支路,而谐波部分会被大大抑制。这样,基波部分通过变压器被输出电路整流和滤波。开关管S1和S2在留有一定的死区时间后交替导通。在死区时间内,S1和S2的寄生电容通过谐振电流Ir和电感LA磁化电流被充电和放电而实现ZVS工作。

如果以D表示主开关管S1的占空比,把输出级和负载电阻RL看作一等效AC电阻RAC=8RL/π,输出电压Vo为Vo=(1)

式中:Zr=(nRAC+Rr)2+[ωsLr-1/(ωsCr)]2

ωs=2πfs;(2)

Rr是串联谐振支路中的寄生串联电阻。

在此变换器中,最大效率88.6%是在输入电压为48V的时候获得的。然而,当输入电压偏离48V的时候,效率会严重下降。

3效率下降原因分析

3?1变换器的工作状态

图3给出了变换器所有可能的工作模态。表2给出了在一个开关周期里的所有可能的工作模式和每一模式中模态转换次序。在图3中,模态1和模态3表示能流从输入端传送到输出端。模态2和模态4对应于在模态1和模态3之间的过渡状态。模态5和模态6表示能流从输出电容反馈到输入端。这种能流回馈状态是同步整流所特有的。在二极管整流电路中,只有能流前馈,即能量从输入端流到输出边的状态,而没有能流回馈状态,即能量从输出端回流到输入端。然而,在用MOSFET作同步整流的电路中,当栅源电压vgs大于阈值时,MOSFET会一直保持开通。因此,图3中模态5及模态6能量回馈的现象出现了。环流增加了能量损耗,导致效率的下降。产生环流的波形如图4所示。

3?2占空比D的范围

能流回馈现象依赖于主开关管的占空比。于是,抑制能流回馈现象出现的合适占空比即是在模式Ⅱ中,必须在模态5出现之前直接从模态3到模态4。据这一条件,则模态3必须在1/(2fr)内完成,即必须在一半谐振周期内完成模态3。fr由Lr,Cr决定,若开关周期由Ts表示,则这一关系由下式表示

 

 

 


(a)模态1 [!--empirenews.page--]

 

 


(b)模态2

 

 


(c)模态3

 

 


(d)模态4

 

 

(e)模态5


图4产生环流的波形(Vin=60V)

 


(f)模态6

 

 

 

 

 


模态6的出现。因此有

(1-D)Ts?1/(2fr)(4)

考虑到Ts=1/fs,则式(3)和式(4)决定了占空比D的范围

[1-fs/(2fr)]?D?fs/(2fr)(5)

从式(5)中可以看出,扩大占空比范围的最简单方式是增大开关频率fs。然而,当开关频率fs偏离谐振频率太大时,则输出电压会按式(1)和式(2)的规律下降。如用表1中的数值,则占空比的范围计算结果是

0.44?D?0.56(6)

对于由式(6)所给的占空比,变换器能恰好工作于没有能量环流的状态。然而,当输入电压变化范围和负载范围变化更大时,为了调节输出电压,必须要扩大占空比的范围。为避免在扩大占空比的范围时导致效率的急剧下降,则必须采取新的方法来克服这种情况。

表2变换器工作模式模式模态转换次序条件
Ⅰ1-2-3-5-1D=0.4(Vin=60V)
Ⅱ1-2-3-4-1D=0.5(Vin=48V)
Ⅲ1-6-3-4-1D=0.6(Vin=40V)
4提高效率的两种方案

4?1倍流型整流电路

为避免效率下降,我们使用了一种倍流[6]同步整流电路的ZVS?PWM控制串联谐振变换器,如图5所示。这种变换器的工作模态见图6。其仿真参数值与表1给出的基本相同,两个电感LO1和LO2仿真参数是7μH。变换器的模态转换顺序总是1-2-3-4。在这种整流电路中,能流回馈现象不再存在。因而,效率下降的原因被消除了。其工作模态简要介绍如下:

1)模态1这一模态表示了从S4到S3换流的过

 

 


图3图1所示变换器的工作模态

 

 

 


图5具有倍流同步整流电路的ZVS?PWM控制串联谐振变换器

 

 


程。当输入电压反向时,谐振电流下降幅度很大。谐振电流耦合到变压器副边,其值将小于输出电感电流值iLO2,开关管S3的体二极管导通;变压器电压变为零,S4关断。然而,S4的体二极管却是开通的,这样,谐振电流继续减少,自然,对于在变压器电压变为零之前的电流来说,则是反方向增加。当这一电流增加到比输出电感电流iLO1还大时,S4的体二极管关断。这一模态变化到下一模态。

2)模态2在这一时间段,开关管S4关断,S3由于变压器电压保持导通。这样,输出电感iLO1通过谐振电流充电。这是能流从输入端传到输出端的过程。

3)模态3这一模态和模态1对称。这时开关管S3换向到S4。[!--empirenews.page--]4)模态4同样,这一模态和模态2对称。S4保持开通,输出电感iLO2被谐振电流充电。这也是能流从输入端传到输出端的过程。

在这一方案中,模态1和模态3是由于存在由Lr,Cr组成的谐振电路的存在而出现的。同步整流MOSFET在诸如模态1和模态3这样的死区间隔内工作。因此,S3和S4的ZVS实现了。如果没有这一串联谐振电路,将不会出现模态1和模态3;那么,由于在模态2和模态4之间转换时间短且转换电压电流幅度大,将会由于存在寄生参数而造成很大的开关噪声。

4?2带耦合电感倍流型整流电路

在图5所示变换器中,其输出电感是独立的。为了减少磁芯的数目,如果让这两个电感耦合到一起,如图7所示,则其工作模态分析如图8所示。参数值和工作模态转换顺序和前面分析相似。在这种整流电路中,能量回馈现象不再出现。同样,效率下降的原因也被消除了。

经过实验和对输出电流和输入电压各个采样点的分析,计算出的效率曲线比较图如图9所示。从中心抽头型,倍流带独立输出电感型和倍流带偶合输出电感型三种电路的效率特性比较中可以看出:通过倍流整流技术,在轻载条件下,效率得到了提高,如图9(a)所示。另外用倍流型电路后,当输入电压偏离48V时,对效率提高有了很大的作用,在负载为3.3V和5A,且输入电压在从40V到60V这一大范围内变化时,仍获得了高于85%的效率,如图9(b)所示。

5结语

电流谐振工作模式被认为对开关变换器的高效率设计非常有效。然而,在中心抽头型同步整流电路

 

 


图6图5中所示变换器的工作模态

 

 

(a)模态1
 

 

 


 

 


(b)模态2

 

 

(c)模态3


(d)模态4

 

 


 

 

 


图7具有带耦合电感的倍流同步整流电路的ZVS?PWM控制串联谐振变换器

 

 

(a)模态1
 

 

 

 

 


(b)模态2

 

 

 

(c)模态3

(d)模态4
图8图7中所示变换器的工作模态

 

 


中,当输入电压偏离特定值时,效率会下降。同时也说明了效率下降的原因是能量回馈给输入端所致。为解决此问题,倍流型同步整流电路被提出用于ZVS-PWM串联谐振变换器,从而使效率下降的原因被消除,在负载为3.3V和5A,且输入电压在从40V到60V这一范围内变化时,得到了85%的效率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭