当前位置:首页 > 电源 > 功率器件
[导读]摘要:介绍了一种单级功率因数校正(PFC)变换器,重点讨论了变换器的主要设计。 关键词:变换器;单级功率因数校正;设计   1 引言 为了减少对交流电网的谐波污染,国际上推出了一些限制电流谐波的标准,如

摘要:介绍了一种单级功率因数校正PFC变换器,重点讨论了变换器的主要设计。

关键词:变换器;单级功率因数校正;设计

 

1    引言

    为了减少对交流电网的谐波污染,国际上推出了一些限制电流谐波的标准,如IEC1000-3-2,它要求开关电源必须采取措施降低电流谐波含量。

    为了使输入电流谐波满足要求,必须加入功率因数校正(PFC)。目前应用得最广泛的是PFC级+DC/DC级的两级方案,它们有各自的开关器件和控制电路。这种方案能够获得很好的性能,但它的缺点是电路复杂,成本高。

    在单级功率因数校正变换器[1]中,PFC级和DC/DC级共用一个开关管和一套控制电路,在获得稳定输出的同时实现功率因数校正。这种方案具有电路简单、成本低的优点,适用于小功率场合。本文介绍了一种单级PFC变换器的基本原理及其设计过程。

2    单级PFC变换器

    单级PFC变换器的原理图如图1所示,是一种基于脉宽调制(PWM)的变换器。变换器的PFC级采用Boost电感电路,而DC/DC级采用双管单端正激电路结构。

图1    单 级 功 率 因 数 校 正 变 换 器 的 原 理 图

    PWM集成芯片采用了UC3842,是一种电流型控制的专用芯片,具有电压调整率高、外围元器件少、工作频率高、启动电流小的特点。其输出驱动信号通过隔直电容,连接在驱动变压器原边。驱动变压器采用副边双绕组结构,得到两路同相隔离的驱动信号,从而实现了DC/DC级的双管驱动。

    变换器的过流保护由电阻R9检测到开关管的过流信号,封锁UC3842的输出信号,实现过流保护。电压负反馈控制由电阻R12R13获得输出电压信号。

    变换器的工作原理简述如下:当变换器接通电源时,输入交流电压整流后的直流电压经电阻R17降压后,给UC3842提供启动电压。进入正常工作后,二次绕组N3提供UC3842的工作电压(12V);绕组N2的高频电压经整流滤波,由TL431获得偏差信号,经光耦隔离后反馈到UC3842,去控制开关管的导通与截止,实现稳压的目的。在一个开关周期Ts内,控制Boost电感工作在不连续导电模式(DCM)下,使得输入电流波形自然跟随输入电压波形,从而实现了功率因数校正。

3    变换器的设计

3.1    EMI滤波器的设计

    EMI滤波器能有效地抑制电网噪声,提高电子仪器、计算机和测控系统的抗干扰能力及可靠性[2]。单级PFC变换器的PFC级工作在不连续导电模式下,其输入电流波形为脉动三角波,因此其前端需添加EMI滤波器以滤除高频纹波。

    EMI滤波器电路如图1所示,包括共模扼流圈(亦称共模电感)和滤波电容。共模电感主要用来滤除共模干扰,其电感量与EMI滤波器的额定电流有关。本文中的单级PFC变换器的额定电流为1A,取共模电感值为15mH。滤波电容C11C13主要滤除串模干扰,容量大致为0.01μF~0.47μF。C14C15跨接在输入端,并将电容器的中点接地,能有效抑制共模干扰,容量范围是2200pF~0.1μF。

3.2    功率器件的选取

    变换器的开关器件一般均选用功率场效应管(MOSFET),依据输入最高电压时输出最大电流的要求来确定其电压与电流等级,并预留有1.5~2倍的电压和2~3倍的电流裕量。在单管变换器中,开关器件的电压UCEO通常可按经验公式选取

    UCEO=Udmax/(1-D)    (1)

式中:Udmax为漏源极的最大电压;

      D为占空比。

    开关器件的电流按高频变压器一次绕组的最大电流来确定。本文中,由于采用双管电路结构,每个开关管所承受的电压为UCEO的一半,故选用耐压500V、电流8A的IRF840。

    变换器中PFC级的二极管选用了超快速恢复二极管,而DC/DC级整流输出端选用肖特基整流二极管,以减小二极管的压降。

3.3    变换器电感的设计

    在单级PFC变换器中,为了实现功率因数校正,通常控制PFC级的Boost电感工作在不连续导电模式;而为了提高变换器的效率,DC/DC级一般采用连续导电模式,在一个开关周期内,通过L1L2的电流如图2所示。

图 2    开 关 周 期 内 通 过L1L2的 电 流 [!--empirenews.page--]

    为了使Boost电感工作于DCM,则有

    <    (2)

    f(D)≈{exp1.96/〔1/(1-D)3/2-1〕-1}/1.6(3)

式中:RL为变换器的负载电阻;

      L1为Boost电感值;

      Ts为变换器的开关周期;

      D为占空比;

      η为变换器的效率;

      UC1为中间储能电容上的电压;

      Uo为输出电压。

    为了使得DC/DC级工作在连续导电模式下,则有

    >(1-D)    (4)

式中:L2为DC/DC级的储能电感值。

    在本文中,要求Ts=8.33μs,D=0.2,Uo=16V,RL=2.133Ω,UC1=380V。故选取L1=100μH,L2=20μH。

    功率因数校正的实验结果如图3所示。图中,第一条波形是交流输入电压经整流桥后的电压波形,第二条波形是流经Boost电感L1的电流波形,近似于正弦波。实验得到的功率因数为0.97。

 

图3    输入电压Vin与电流iL1

3.4    高频变压器的设计

    高频变压器是变换器的核心元件,它的性能好坏不仅影响其本身的发热和效率,而且还会影响到变换器的技术性能和可靠性。

    1)磁芯的选用

    本文的负载设计为Uo=16V,Io=7.5A,由高频变压器的二次绕组N2绕组提供。而绕组N3提供UC3842的工作电源,其输出功率很小,可忽略。由设定条件可知,高频变压器的输出功率为

    P2=16×7.5=120W

    根据文献[3]给出的输出功率与磁芯尺寸的关系,选用了PQ32-30磁芯,其有效截面积为167mm2。 [!--empirenews.page--]

    2)绕组匝数的确定

    变压器初级绕组电压幅值UP1

    UP1=UC1-ΔU1UC1=380V    (5)

式中:UC1是变压器输入直流电压(等于中间储能电容上的电压);

          ΔU1是变压器初级绕组的电阻压降与开关管的导通压降之和,在实际计算中可以忽略。

    变压器二次绕组N2的电压幅值UP2

    UP2==83.5V(6)

式中:ΔU2是变压器二次绕组的电阻压降与整流管的压降之和。

        初级绕组匝数N1

    N1=    (7)

式中:f是开关频率(120kHz);

           ΔBm是磁通增量,此处取ΔBm=0.15T。

    N1=×104=25.3匝    (8)

    实际取N1为26匝。

    二次绕组N2匝数为

    N2=N1=×26=5.7≈6匝    (9)

    二次绕组N3提供UC3842的12V工作电压,其匝数由下式得到

    N3=N1=≈4匝(10)

式中:UP3为二次绕组N3的电压幅值。

4    结语

    应用脉宽调制集成控制芯片UC3842构成的单级PFC变换器,具有电路结构简单、成本低等优点。不仅获得稳定的输出,而且实现了功率因数校正

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

电动汽车无线充电技术通过埋于地面下的供电导轨以高频交变磁场的形式将电能传输给运行在地面上一定范围内的车辆接收端电能拾取机构,进而给车载储能设备供电,可使电动汽车搭载少量电池组,延长其续航里程。

关键字: 电动车 无线充电 PFC

DC-DC变换器集成电路/模块不仅成为各种功率电子设备的心脏,而且也成为各种功率电子设备和系统高效率、低功耗、安全可靠运行和自动化控制的关键。

关键字: 混合DC/DC 电源 变换器

环路补偿是设计DC-DC转换器的关键步骤。如果应用中的负载具有较高的动态范围,设计人员可能会发现转换器不再能稳定的工作

关键字: DC/DC 变换器 拓扑结构

DC-DC电源芯片是一种用于控制和调节直流电压的电路,为各种电子系统提供稳定可靠的DC电压。它们在移动设备、通信产品、汽车、医疗仪器和各种工业领域等各种应用中都有广泛的用途。

关键字: DC/DC电源 变换器 开关电源

DC-DC转换器是将一种直流电压或电流电平转换为另一种直流电压或电流电平的机电设备或电子电路。在大多数情况下,设备只使用一个电源。

关键字: 整流 DC/DC电源 变换器

随着半导体行业的发展,手机与通讯、消费类电子等下游需求的拉动,电源管理芯片的应用逐渐增加。相关政策和人才与市场接轨,产业环境不断完善,电源管理芯片进口替代效应明显增强。

关键字: DC/DC 电源 变换器

搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来

关键字: DC/DC 变换器 驱动电路

来自直流电源的能量会在DC-DC变流器中发生变换,由于其能在较宽范围内调整输出电压,内部使用开关元件将能量从源端尽可能吸取到负载端,以保证改变输出能量的稳定,耽误的损耗降至最低,实现输入和输出的能量变换。

关键字: DC/DC 电源 变换器

DC-DC电源芯片是一种用于控制和调节直流电压的电路,为各种电子系统提供稳定可靠的DC电压。它们在移动设备、通信产品、汽车、医疗仪器和各种工业领域等各种应用中都有广泛的用途。

关键字: DC/DC 电源 变换器

DC/DC变换器随着技术的发展不断进步,与变换器相关的技术也在不断发展,这些技术的发展也在一定程度上影响着变换器的发展。

关键字: DC/DC 变换器 航天器
关闭
关闭