当前位置:首页 > 电源 > 功率器件
[导读]摘要:介绍了一种利用互补的PWM控制的不对称半桥DC/DC变换器。分析了电路的稳态过程和开关的ZVS过程,同时对开关达到ZVS的条件进行了分析。实验结果表明了这种电路对提高效率的有效性。为了进一步改进电路,针对电路

摘要:介绍了一种利用互补的PWM控制的不对称半桥DC/DC变换器。分析了电路的稳态过程和开关的ZVS过程,同时对开关达到ZVS的条件进行了分析。实验结果表明了这种电路对提高效率的有效性。为了进一步改进电路,针对电路输出二极管的电压应力的不平衡,提出了一种副边绕组不相等的拓扑,并进行了分析。

关键词:不对称半桥;零电压开关;效率

 

 

1    引言

    近年来,软开关技术得到了广泛的发展和应用,提出了不少高效率的电路拓扑,其中不对称半桥是一个比较典型的电路。

    不对称半桥是一种适用于中低功率的DC/DC零电压开关(ZVS)变换器电路。该电路采用固定死区的互补PWM控制方式,不需要外加元件,充分利用电路本身的分布特性,通过变压器漏感和开关寄生电容的谐振,实现零电压开关。这种电路保持了PWM开关模式的低开关导通损耗,而且消除了开关的导通损耗,因此,可以得到很高的效率。

2    主电路的工作原理分析

2.1    电路的稳态分析

    不对称半桥的主电路如图1所示。图1中包括两个互补控制的功率MOSFET,其中S1的占空比为D,S2的占空比为(1-D),DS1和DS2是开关的体二极管,CS1CS2分别是开关的结电容。隔直电容Cb,作为开关S2开通时的电源。包括漏感Lk,励磁电感Lm的中心抽头的变压器,原边匝数为Np,副边匝数分别为Ns1Ns2。半桥全波整流二级管D1和D2。输出滤波电感L,电容Cf和负载RL

图1    不对称半桥主电路图

    电路的稳态工作原理为:

    1)当S1导通时,变压器原边承受正向电压,副边NS1工作,二极管D1导通,开关S2,二极管D2截止;

    2)当S2导通时,隔直电容Cb加在变压器的原边,副边NS2工作,开关S1,二极管D1截止。

    理想的工作波形见图2。其中n1=Np/NS1n2=Np/NS2,且n1=n2=n。通过对电路的稳态分析,可以得到以下的一些公式。

图2    不对称半桥的理想波形

    由于变压器的伏秒平衡,电压的直流分量都加在隔直电容Cb

    Vcb=DVin    (1)

    从输出滤波电感的磁平衡,可推导出输出电压

    Vo=    (2)

2.2    开关的ZVS过程分析

    下面分3个工作模式来分析开关S2的ZVS过程。理想的工作波形见图3。

图3    不对称半桥开关S2的ZVS过程的波形

    1)开关模式1(t0t1)    在t0时刻,S1关断,S1的寄生电容CS1被线性充电,S2的寄生电容CS2线性放电。变压器副边D1续流。此阶段在t1时刻vA=Vcb结束。

    2)开关模式2(t1t2)    t=t1时,变压器原边电压变为负,电容CS1CS2和漏感Lk发生串联谐振。

    vA(t)=VcbIp1Znsinωk(tt1)    (3)

    ip(t)=Ip1cosωk(tt1)    (4)

式中:Ip1t1时的变压器原边电流;

      Zn为特征阻抗,Zn=;

           ωk为谐振角频率ωk=; [!--empirenews.page--]

      C=CS1=CS2

    由于负压加在Lk上,漏感电流Ip开始减小。副边为了保持输出电流Io不变,整流二级管D1和D2一起导通,变压器副边等效短路,变压器原边电压全部加在漏感上。

    3)开关模式3(t2t4)    在t=t2时,vA=0时,S2的体二极管DS2开始导通,为S2创造了零电压开通的条件。这时一个恒定的电压Vcb加在Lk上,变压器原边电流ip线性下降,在t=t3时,ip过零,并反向增大,二极管D1和D2继续共同导通。

    S2必须在t2t3之间导通,否则将失去零电压开通条件。所以要适当设计开关脉冲之间的死区时间(tat0)。

    通过对不对称半桥开关S2的开通瞬态分析可知,要使开关能够实现ZVS开通,必须满足以下两个条件。

    (1)在S2开通时,S2两端的电压(即vA)必须小于零且ip仍为正向,也就是说,电路要有一定的负载电流,由式(3)可得

    ip1>    (5)

从而得出特征阻抗要满足的条件为

    Zn>    (6)

    (2)两个开关脉冲之间要保证适当的死区时间,使得S2在其电压过零时开通。也就是要满足t2t0<tat0<t3t0,其中

    t2t0=C+arcsin    (7)

    t3t0=(t2t0)+Lk    (8)

    S1的零电压开通过程同S2类似。当S2关断,S1准备开通时,ipCS2充电,而CS1放电。LkCS1CS2组成串联谐振电路。当CS1上的电压放到零时,S1的体二极管DS1开通,这时开通S1,就实现了S1的ZVS开通。

3    实验结果

    根据以上的分析,设计了一个频率为100kHz的电路。输入电压为40~60V,输出电压为12V,输出电流为6A。原边开关选用STP75NE75,D1选用STP10H100CT,D2选用STP30L60CT。功率变压器选用EER28骨架,Np=10匝,NS1=NS2=6匝。实验所得的S1、S2的漏源极电压波形与漏极电流波形见图4。从图4中可以看出,S1和S2都实现了ZVS。

(b)    Vin=60V

(a)    Vin=40V

(d)    Vin=60V

(c)    Vin=40V

图4    在不同输入电压时的实验波形 [!--empirenews.page--]

4    不对称半桥的改进

    对图1的稳态分析还可以得出输出二级管关断时承受的反向电压

    VD1=    (9)

    VD2=    (10)

    如前所述,不对称半桥占空比的最大值是0.5。所以,从式(9)和式(10)可以得出,当占空比很小时,二极管D2承受的反压就会很大。而且这种情况在输入电压范围宽时更加严重。

    如果采用副边绕组不相等的电路(即Ns2/Ns1大于1),则占空比就可以大于0.5,从而消除这种二极管电压应力不均的问题。这时不对称半桥的输出电压为

    Vo=    (11)

    下面具体推导如何根据已知条件求出Ns2/Ns1的值。

    令a=Ns2/Ns1    (12)

    则式(11)可变为

    Ns1=    (13)

    令占空比的变化范围为D1D2,且D1<0.5<D2,也就是说,当输入电压为最大值Vinmax时,占空比为D1,当输入电压为最小值时,占空比为D2,即

    Ns1=    (14)

    Ns1=    (15)

由式(14),式(15)可得

    =·    (16)

f(D2)=,并求这个函数的最大值,可以得出,在

    D2=    (17)

时,函数f(D2)取得最大值。显而易见,当占空比对称地分布在0.5左右时,可以得到最理想效果。可以得到

    D1=    (18)

把式(17)和(18)代入式(16),就可以得到a的值了。

    以本文实验为例,来说明不对称绕组对二极管选用的好处。

    图5是输出电压为12V时输出二极管的电压应力图。从图5中可以看出,当Ns2/Ns1增加时,二极管D1的电压应力会增大,而二极管D2的电压应力会减小。当Ns2/Ns1=1时,2个二极管的电压应力范围约为25~50V。当Ns2/Ns1=3时,二极管的最大电压应力小于35V。

图5    输出二极管的电压应力

5    结语

    不对称半桥DC/DC变换器由于采用了互补的PWM控制,充分利用电路的特性,以谐振的方式达到开关的ZVS开通,从而消除了开关损耗,提高了电路的效率。

    同时,采用副边绕组的不对称解决了普通的不对称半桥电路输出二极管电压应力不均的问题。这样可以选用低电压的二极管,即节约了成本,还进一步提高了电路的效率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭