当前位置:首页 > 电源 > 功率器件
[导读] 当MOSFET关断时,就会有一个高压尖刺出现在其漏极上。这是由于主变压器的漏感和MOSFET输出电容谐振造成的,在漏极上过高的电压可能会击穿MOSFET,为此就必须增加一个附加电路来钳制这个电压。在此技术范围,我们介绍反激变换器的RCD吸收回路。

当MOSFET关断时,就会有一个高压尖刺出现在其漏极上。这是由于主变压器的漏感和MOSFET输出电容谐振造成的,在漏极上过高的电压可能会击穿MOSFET,为此就必须增加一个附加电路来钳制这个电压。在此技术范围,我们介绍反激变换器RCD吸收回路

  一、简介

  反激变换器是结构最简单的电路拓扑之一。它直接从一个Buck ̄Boost变换器放一个电感与之耦合而成,也就是一个加入气隙的变压器。当主功率开关导通时,能量存在变压器中,在开关关断时,又将能量送到输出级。由于在主功率开关导通时变压器需要储能,因而磁心要加气隙。由于反激式需要的元器件很少,因而是中小功率电源常用的电路拓扑。例如:充电器、适配器及DVD播放机等。

  图1反激变换器的电路

  (a)具有寄生元器件的反激变换器;(b)CCM方式工作波形;(c)DCM方式工作波形

  图1 给出反激变换器在连续导通型工作(CCM)和断续导通型工作(DCM)的几个寄生元器件。如一次级间漏感、MOSFET的输出电容、二次侧二极管的结电容等。当MOSFET关断时,一次电流Id给MOSFET的Coss充电,此电压力加在Coss上,Vds超过输入电压,加上了折返的输出电压VIN+Nv。,二次侧二极管导通。电感Lm上的电压钳在Nvo,也就是LIK1与Coss之间的高频谐振及高浪涌,在CCM工作模式下,二次侧二极管一直导通,直到MOSFET再次导通。因此当MOSFET导通时,二次侧二极管的反转恢复电流要叠加到一次电流上。于是,在一次就有一个大的浪涌出现在导通时,此即意味着对于DCM工作情况,因二次侧电流在一个开关周期结束之前已经干涸。所以Lm与Coss之前才有一个谐振。

关键字:反激变换器 RCD吸收回路 MOSFET

 

  二、吸收回路设计

  由于LIK1与Coss之间的谐振造成的过度高电压必须为电路元器件能接受的水平,为此必须加入一个电路,以保护主开关MOSFET。RCD吸收回路及关键波形示于图2和图3所示。它当Vds超出VIN+nV时,RCD吸收回路使吸收二极管VDsn导通的方法来吸收漏感的电流。假设吸收回路电容足够太,其电压就不会超出。

  当MOSFET关断时,Vds充电升到VIN+nV。一次电流通过二极管VDsn到达吸收回路的电容Csn处,二次侧的整流管在同时导通。因此其上的电压为Vsn-nV,Isn的斜率如下:

  图2反激变换器的RCD吸收回路

  图3加入吸收回路的DCM关键波形

关键字:反激变换器 RCD吸收回路 MOSFET

 

  式中:isn是流进吸回路的电流;Vsn是吸收回路电容上的电压;n是主变压器匝数;LIK1是主变压器的漏感。因此,时时TS可以从下式求出:

  式中:Ipeak是一次电流的峰值。

  吸收回路电容电压,Vsn在最低输人电压及满载条件下决定。-旦Vsn定了,则吸收回路的功耗在最低输人电压及满载条件下为:

  式中:fs是开关频率;Vsn为2~2.5倍的nVo,从公式中看出非常小的Vsn使吸收回路损耗也减小。

  另一方面,由于吸收回路电Rsn的功耗为,我们可以求得电阻:

  然后吸收回路的电阻选用合适的功率来消耗此能量,电容上的最太纹波电压用下式求出:

  通常5% - 10%的纹波是可以允许的,困此,吸收回路的电容也可用上式求出。

  当变换器设计在CCM工作模式下时,峰值漏电流与吸收回路电容电压一起随输入电压增加而减少。吸收回路电容电压在最高输入电压和满戴时可由下式求出:

  式中:fs为开关频率;LIK1为一次漏感;n为变压器匝数比;Rsn为吸收回路电阻;Ipeak2为一次在最高输入电压和满载时的峰值电流。当变换器工作在CCM状态,又是最高输入电压及满载条件Ipeak2表示如下:

  式中:PIN为输入功率;Im变压器劢磁电感。VDCmax为整流的最高输人电压值Vdc。

  如果在瞬间过渡时及稳态时Vds的最高值低于MOSFET 的BVdss电压的90%和80%,则吸收回路二极管的耐压要高于BVdss,可以选用一个超快恢复二极管为1A电流,耐压120%BVdss。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭