当前位置:首页 > 电源 > 功率器件
[导读]现今,电源设备有朝着数字化方向发展的趋势。然而绝大多数数控电源设计是通过高位数的A/D和D/A芯片来实现的,这虽然能获得较高的精度,但也使得成本大为增加。本文介绍一种基于AVR单片机PWM功能的低成本高精度数控恒

现今,电源设备有朝着数字化方向发展的趋势。然而绝大多数数控电源设计是通过高位数的A/D和D/A芯片来实现的,这虽然能获得较高的精度,但也使得成本大为增加。本文介绍一种基于AVR单片机PWM功能的低成本高精度数控恒流源,能够精确实现0~2A恒流。

  系统框图

  图1为系统的总体框图。本系统通过小键盘和LCD实现人机交流,小键盘负责接收要实现的电流值,LCD 12864负责显示。AVR单片机根据输入的电流值产生对应的PWM波,经过滤波和功放电路后对压控恒流元件进行控制,产生电流,电流再经过采样电阻到达负载。同时,对采样电阻两端信号进行差分和放大,送入ADC。单片机根据采集到的值调整PWM输出,从而调整了输出电流。如此反复,直到电流达到设定要求。

  图1 数控恒流源系统框图

  模块介绍

  1 人机接口模块

  本模块包括小键盘电路和液晶显示电路。键盘设计为3×4键盘,由数字键0~9,功能键“删除”及“确认”组成,采用反转法实现键值识别。显示电路由带中文字库的LCD 12864构成,该液晶可以每行8个汉字显示4行。由于这部分电路比较简单,在此不详述。

  2 核心控制模块

  系统的核心控制模块为AVR单片机(ATMEGA 16L)。主要使用了AVR的PWM功能和A/D功能。

  AVR单片机片内有一个具有16位PWM功能的定时/计数器。在普通模式下,计数器不停地累加,计到最大值(TOP=0xffff)后溢出,返回到最小值0x0000重新开始。当启用PWM功能即在单片机的快速PWM模式下,通过调整OCR1A的值可实现输出PWM波的占空比变化。产生PWM波形的机理是:PWM引脚电平在发生匹配时(匹配值为0~0xffff之间的值,如图2中的C),以及在计数器清零(从MAX变为BOTTOM)的那一个定时器时钟周期内发生跳变,具体实现过程如图2所示。

  图2 PWM波产生过程

  图2中的C~F为OCR1A匹配值。从图中可见,波形在每个匹配值处以及计数清零时输出发生变化,从而实现了PWM波。由于OCR1A的值可以从0x0000到0xffff,共有65535个值,因此PWM波的最大分辨率为1/65535,满足系统分辨率设计要求。PWM波的频率为:

  (1)

  其中,fclk_I/O为系统时钟频率 (7.3728MHz),N为分频系数(取1、8、64、256或1024)。在N取1时,根据式(1)得PWM波的最大频率为7.3728MHz;当N取1024时,PWM波的最小频率为 7.2kHz。本系统N取256,PWM波频率为28.8kHz。

  单片机内部有1个10位的逐次逼近型ADC,当使用片内VCC作为参考电压Vref,其分辨率为:

  (2)

  若使用片内的2.56V基准源作为参考电压,依据式(2)可得到其分辨率为0.003V。

  当系统需要更高的分辨率时,可以通过软件补偿的方法来实现。具体实现方法可参考相关资料。

  3 滤波和功放模块

  图3 二阶RC低通滤波电路

  PWM波产生后不能直接用于控制MOSFET,需把其变成能随占空比变化而变化的直流电压。在此,我们选用二阶RC低通无源滤波器,并取得了很好的效果。

  二阶RC低通无源滤波器的系统函数为:

  (3)

  其中,A为通带增益,Q为品质因素, ω0为截止频率。根据式(1)算出PWM波的频率,取截止频率为30kHz,由式(3)可确定对应的电阻、电容值。

  由于无源滤波器的负载能力差,信号经过二阶无源滤波网络后衰减比较厉害,需要增加一级功率放大电路。功放电路比较简单,也有经典电路,限于篇幅不再赘述。[!--empirenews.page--]4 恒流源模块

 

  恒流源采用的是压控恒流元件IRF540,它的VGS为20V,ID为33A。截止时,最大漏电流为1μA,导通电阻仅有0.04Ω,图4为IRF540的特性曲线。

  图4 IRF540特性曲线

  由图4可知,当VGS为5V时,可输出电流就可达到30A左右,完全能实现小电压控制大电流的目的。具体应用电路如图5所示。

  图5 横流电路

  IRF540的G极接PWM波转换后的直流电压,D极接能提供15V/5A电流的电源(可采用开关电源),S极用来接采样电阻和负载。采样电阻应采用温漂系数低、阻值为10mΩ、精度为1%的大功率锰铜丝电阻。当对采样电阻两端信号进行差分后,可得到采样电阻两端的电压值U,而在已知采样电阻阻值情况下,很容易得到流经采样电阻的电流,即I=U/R。由于负载与采样电阻在同一条支路,故流经负载的电流也为I。差分放大电路的放大倍数可根据采样电阻阻值以及ADC的参考电压来选择,图5中要求R1=R3,R2=R4,放大倍数为R4/R3。需要注意的是该电路应该具有很高的输入阻抗,以减少对负载电路的影响。差分信号经ADC口送入单片机进行处理。

  软件设计

  由图6可知,整个系统是一个动态的闭环系统。由于PWM初始匹配值设置的大小不同,电流值在开始时可能会跟设定值有较大偏差。随着闭环系统的自我调整,逐渐使输出稳定在设定值上下。系统达到稳定状态的时间以及稳定后电流值波动的幅度,可根据设计要求由软件来调整。

  图6 程序流程图

  实验结果

  我们对此数控恒流源进行了负载测试,测试结果如下:

  从表1和表2的实测数据中可以看出,该恒流源在负载为100Ω以内,最大误差仅为2mA,在0~200mA段没有误差,满足了设计要求,达到了较高的精度。

  如果需要提高200mA段以上的精度,可采用软件补偿的方法实现。即先测量足够多的测试数据,然后采用曲线拟合方法对数据分段进行补偿,详细方法可参考相关资料。

  结语

  本数控恒流源电路结构简单,成本低,系统稳定可靠,精度高,已经应用于工业生产。如果设计要求更高的恒流值,可以更换更大功率的+15V/I电源,以及更换合适的压控恒流元件。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭