当前位置:首页 > 电源 > 功率器件
[导读]随着锂离子化学电池在各种电子产品设计中的使用越来越普遍,为这些电池充电的创新解决方案变得越来越必不要少。为了获得最大程度的系统灵活度,我们可以使用微处理器来控制电池充电的各个方面,包括旨在提高充电速率

随着锂离子化学电池在各种电子产品设计中的使用越来越普遍,为这些电池充电的创新解决方案变得越来越必不要少。为了获得最大程度的系统灵活度,我们可以使用微处理器控制电池充电的各个方面,包括旨在提高充电速率和电池寿命的独特充电算法。这种方法还能够允许更高电压的电池组实施。

本文将介绍如何利用一颗微处理器来控制一个宽输入电压 DC/DC 控制器的功率级板。这种解决方案可支持高达 55V 的输入电压;5V 到 51V 范围的电池充电电压;以及在大多数情况下高达 10A 的输出电流。本文中所讨论的硬件和软件均由 TI 应用工作人员开发,并经过他们的测试,目的是让客户能够快速地进行解决方案原型机制造。

为了易于开发,我们将电池充电器分解为两个单独的板:微处理器控制器板和DC/DC-转换器功率级板(请参见图 1)。正负电池端均连接至功率级板,而系统管理总线 (SMBus) 通信线则连接至微处理器板。智能电池将我们想要的充电电压和电流信息发送给微处理器,之后将两个脉宽调制 (PWM) 信号发送给DC/DC-转换器功率级板,以设置实际输出电压和电流。

为了能够使用标准宽输入电压 DC/DC 转换器,功率级板设计有一个特殊的反馈电路(请参见图 2),以正确地控制电池充电。微处理器遵循的充电序列是,在电池电压接近其规定最大电压以前一直对充电电流进行限制。当达到最大电压时,充电电压便保持恒定,从而让充电电流逐渐减少,直到认为电池获得完全充电为止。这时,PWM 输出信号便关闭。

初始电流限制充电速率有两个电流电平。当电池过度放电时,在电池电压达到某个足够安全的级别来接受标准充电速率以前,将一直使用很低的充电速率来进行充电。


在如图 2 所示反馈电路中,U3:B 将 PWM-电流基准电压 (I_PWM1) 同提供给电池的测量电流 (ISNS1) 进行对比。如果 PWM 基准电压高于测量电流,则放大器输出为高。如果基准电压较低,则放大器输出为低。

一个电阻分压器(R30 和 R34)用于测量 U3:A 的 VBATT1 输入端的输出电压。我们将该电压同PWM-输出基准电压 (V_PWM1) 进行对比。如果该基准电压更高,则放大器输出为高。如果基准电压更低,则放大器输出为低。最大输出电压可由如下方程式表示:

图 1 宽输入电压智能电池充电器的高级系统结构图

[!--empirenews.page--]

图 2 正确对电池充电的恒流/电压-反馈电路


图 3 过压及反极保护电路


图 4 软件流程图简述

[!--empirenews.page--]

D1 二极管将两个放大器输出与一个逻辑 OR 组合。最低电压供给反相放大器(U3:D),其让误差信号极性在使用 DC/DC 控制器(这里为 TI 的 TPS40170)时为正确的。基本工作原理是:控制器尝试发送一个设定电流;同时,如果负载可以接受该电流,则控制器便调节为该电流级别。如果负载不接受全部电流,则电压开始上升,并最终达到 VOUT(max)。当出现这种情况时,电压环路接管,并对输出电压进行调节。

若想提高解决方案的安全性,功率级板上还要有过电压状态(高达100V)和反向电压连接(其正负极被交换)的保护电路。图 3 显示了这种电路。

输入电压反接时,反向电压保护由 MOSFETs Q7 和 Q9 以及 D2 来提供。这样便不允许对系统施加负电压。输入过电压保护由 MOSFET Q8 和 Q10 提供。齐纳二极管 D4,设置电路开始钳位的电压。一旦超出齐纳电压,FET 的栅-源电压便开始下降。这使FET工作在线性区域,并让微处理器继续得到供电。与此同时,DC/DC转换器关闭,而信号SD1和SD2被拉至接地。


软件实施与硬件实施同等重要。简要软件流程图已显示在图 4 中。微处理器通过 SMBus 询问电池,请求其想要的充电电压和电流。在确认这些值以后,它便设置两个 PWM 输出,以对到达电池的输出电压和电流进行调节。如果在任何时候,电池发布了一条充电警告,则 PWM 输出关闭。另外,一旦电池的充电状态达到 100% 或者设置的完全充电位,则 PWM 输出关闭。


电池充电期间,安全是最重要的问题。所有解决方案都应该有数个保护层。第一个保护层是具有内部保护 MOSFET 的智能电池本身。在充电期间,微处理器应定期(每隔 2 秒钟较好)与电池通信,对“电池状态”寄存器中的所有安全标志进行监控。要求响应的一些标志位包括过充电警告 (OCA)、终止充电警告 (TCA)、超高温警告 (OTA),以及完全充电 (FC) 状态。微处理器的板上模数转换器,可用作过电压或者过电流事件的二次检查。


结论

通过将一颗微处理器与一个宽输入电压 DC/DC 控制器配合使用,我们可以设计出一种完全可编程、宽输入电压电池充电器。本文为你介绍了一种解决方案,其使用 TI 的低功耗 MSP430F5510 微处理器,配合 TPS40170 DC/DC 控制器,构建起一种能够支持高达 55V 输入电压的结构。文章描述了一种 TI 应用工作人员为实施正确电池充电而开发的特殊反馈网络。另外,我们还讨论了一种用于过电压保护和反向电压保护的新颖解决方案。通过 SMBus 通信协议与智能电池进行通信所需的软件,可通过“参考文献1”(一份应用报告)中的链接下载到。SMBus 智能电池充电器的相关详情,也可在“参考文献 1”中找到。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在许多无线基站应用中,隔离电源转换器的电源是通过 -48 V 电源提供的。通信基站使用-48V电源很大部分有历史原因,历史上,通信行业设备一直使用-48V直流供电。-48V也就是正极接地。

关键字: GSM 电流 电压

实验通过光耦实现输出和输入的隔离,不仅提高了电源的效率,简化了外围电路,也降低了电源的成本和体积,使电源具有输出电压稳定,纹波小等优点。

关键字: 光耦 电压 纹波

开关电源在负载短路时会造成输出电压降低,同样在负载开路或空载时输出电压会升高。在检修中一般采用假负载取代法,以区分是电源部分有故障还是负载电路有故障。

关键字: 开关电源 假负载 电压

与许多工程决策一样,选择使用什么电阻值是一种权衡。较高值的电阻器会产生较高的 IR 压降和其端子上的电压,从而简化电压检测并提高 SNR。

关键字: 电阻值 IR 压降 电压

电源波动:电源电压的微小变化都能引起输出电压的漂移。例如,当电源电压变化时,三极管的静态电流和集电极电阻上的压降都会发生变化,从而影响输出电压。

关键字: 零点漂移 电源波动 电压

电路功率元件由标准的boost电路组成,通过电压和电流的双重反馈,其中电压位于外环,而电流位于内环。因此,APFC在保证输出端恒定电压的同时,使得电流的波形为正弦波。

关键字: 电路 功率元件 电压

电源系统设计包括设计参数之间的许多权衡,例如尺寸、成本、效率和负载瞬态性能。为了设计功率级,必须建立各种特性,例如瞬态容限、纹波电压和负载特性。

关键字: 降压转换器 电源设计 控制

当电流增大时TL431-1的电位被太高,从而起到现在电流的功能,因为R3的存在对输出电压进行了补偿.所以基本上可以做到限流稳压功能为一体, 具有相对的成本优势。

关键字: TL431-1 电流 电压

引领供应链数字化转型新潮流 上海2024年5月16日 /美通社/ -- 5月14日,"第七届亚太智慧供应链与物流创新博览会"在上海顺利举办,作为中国和亚太区最大规模,最有影响力的顶流供应链物流盛会,...

关键字: 数字化 软件 供应链管理 控制

上海2024年5月13日 /美通社/ -- CONNECT 2 是更加用户友好的声卡,仅需轻点几下,它就能为人声和乐器的录制增添异彩。触控面板触感舒适、控制精准、一目了然。所有输入输出信号均可独立静音。自动设置功能通过内...

关键字: NEC 声卡 控制 软件
关闭
关闭