当前位置:首页 > 电源 > 功率器件
[导读]引言相对于CRT电视,中等尺寸和大尺寸平板液晶电视的功耗要高很多。这增加了液晶电视使用成本,限制了液晶电视的普及。能源之星3.0针对不同尺寸的电视机制定了全新的功耗规范。待机输入功耗, 输入谐波和平均效率也必

引言

相对于CRT电视,中等尺寸和大尺寸平板液晶电视的功耗要高很多。这增加了液晶电视使用成本,限制了液晶电视的普及。能源之星3.0针对不同尺寸的电视机制定了全新的功耗规范。待机输入功耗, 输入谐波和平均效率也必须符合这些规定。例如,表1所示为不同尺寸电视机在开机模式下的功耗要求。因此,要想满足该要求,必须利用高效率开关电源。除开机功耗外,在待机模式下,输入功率应低于1W。待机功率要求是开关电源 设计者面临的又一挑战。此外,大多数尺寸的电视机的输入功率高于75W,因此需要功率因数校正(PFC)电路以符合ICE61000-3-2标准要求。要获得高效率和高功率因数,需要采用有源PFC调节器。总之,典型的液晶电视开关电源通常由待机功率转换器、PFC预调节器和主转换器构成。本文将探讨如何应对不同功率级的挑战。
表1  不同尺寸电视机的平均开机功率水平要求

功率级

PFC预调节器

升压转换器是应用最为广泛的拓扑。对于传统的PFC CCM解决方案而言,需要采用两个控制回路(电流回路与电压回路)。控制电路较为复杂,同时采样输入电压信号也将额外增加待机损耗。为了解决这些问题,采用8管脚CCM PFC、ICE2PCS02G,控制器可降低设计难度。采用该控制器只需连接少数器件,这使PFC级的设计变得轻而易举。这种IC采用BiCMOS工艺制成,因此输出电压采样管脚的输入阻抗非常高。例如,采用6 MΩ电阻分压器,待机模式下功耗仅为27mW。这有助于满足待机功率要求。除控制器部分外,具备最低导通电阻和较低寄生电容的全新CP系列 CoolMOS也是提升效率的最佳选择。液晶电视开关电源中典型的PFC转换器电路如图1所示。
 

可视屏幕对角线尺寸(英寸)
宽高比
可视屏幕尺寸(英寸)
屏幕区尺寸(英寸)2
最大开机功率(W)
480行垂直分辨率
768或1080行垂直分辨率
20
16:9
17.4*9.8
170.5
45
66
32
16:9
27.9*15.7
438
78
120
42
16:9
36.6*20.6
754.0
115
208
50
16:9
43.6*24.5
1068.2
153
318
60
16:9
52.3*29.4
1537.2
210
391

 

 
 

图1采用 ICE2PCS02G和 IPA60R199CP的PFC预调节器应用电路
主功率级
就液晶电视而言,典型输入电压为24V的背光单元消耗绝大部分功率。对于这些输出功率范围为60W~180W,输入电压为400V的应用而言,准谐振(谷值开关)反激式转换器是非常经济合算的解决方案。相对于硬开关反激式转换器,它具备更出色的效率和EMI性能。
对于未加限频电路,自由运行的准谐振反激式转换器而言,如果系统的工作负载在50% 至70%之间(测量开机功耗的负载范围),开关频率就会增大许多。大多数情况下,这需要设计者付出更大的努力和成本来优化设计。英飞凌准谐振控制器 ICE2QS02G采用标准数字降频模式,有效解决了此问题。根据负载情况,IC将在不同的谷值点开通MOSFET。例如,在满负载条件下,转换器将在第一谷值点运行,提供最大功率,如果负载降至70%时,转换器将在第二或第三谷值点运行。在这种情况下,转换器的开关损耗和传导损耗始终保持平衡,转换器获得最高的运行效率。明MOSFET在第一谷值点和第七谷值点导通。
(a)在第一谷值点完成谷值开关
   
(b)在第七谷值点完成谷值开关
改善主功率级效率的另一个可行办法是采用高压MOSFET。对于准谐振反激式转换器,高压MOSFET允许存在高反射电压,因此降低了MOSFET的导通损耗。此外,采用高压MOSFET还可降低主传导损耗。例如,800V CoolMOS® C3 或全新900V CoolMOS可使效率再提高1%~3%。这出色平衡了成本和效率。

待机转换器

在这种功率水平,需要独立的待机转换器。采用集成功率IC和固定频率反激式转换器是当前最经济实惠的解决方案。除成本以外,待机功耗是最大难点。

液晶电视SMPS待机功耗应低于1W。在这种情况下,系统的输出功率约为0.5W(来自待机转换器)。PFC预调节器和主功率级关闭。因此,改善待机能效的关键点包括待机转换器效率、二次侧功率损耗和母线电压采样功率损耗。

为改善待机转换器的转换效率,降低平均开关频率至关重要。不过,要想在系统结束待机时保持输出调节并为负载波动做好准备,需主动进行控制。英飞凌CoolSET F3R产品具备独有的主动突发模式,可实现超低的待机功耗。图所示为主动突发模式的工作原理。

图3 英飞凌CoolSET主动突发模式工作原理

其工作原理是,如果反馈信号水平降至突发进入阈值(FB1)以下,并持续一段时间,控制IC进入主动突发模式。这时开关脉冲停止,输出电压则会降低,然后反馈电压升高。当它升到突发开始水平(FB3),开关脉冲恢复。在处于突发模式期间,输出会升高 ,反馈电压开始降低。当它降到突发结束水平(FB2),开关脉冲再次停止。这种突发交替性结束开始,构成主动突发模式。如果负载由轻载提高至重载,反馈电压值将开始提高。如果反馈电压水平超过突发退出阈值(FB4),IC将离开主动突发模式。屏蔽时间和其他2个阈值(FB1和FB4)可有效降低错误触发突发模式的几率。最后,如果IC进入主动突发模式,最大峰值电流阈值将降至原始值的三分之一或四分之一。这可大大降低变压器电流噪音。

除了待机转换效率,还可降低输出电压、主总线和输入电压感测功率损耗。例如,在主功率级的输入电压采样部分采用4MΩ电阻分压器。
 
系统性能

 
表1  推荐解决方案的技术规格

输入电压
85Vac~265Vac
输入频率
47Hz – 63 Hz
输入谐波
符合 EN61000-3-2 标准
正常运行
主转换器输出
24 V / 6 A
12 V / 3 A
辅转换器输出
5 V / 2 A
待机运行
在5 V / 0.1 A输出条件下,管脚小于< 1W
电路板尺寸
231mm χ 170mm χ 30mm

在额定线路输入电压条件下,不同负载情况下的系统效率。在110Vac条件下,满负载效率超过87%。此外,平均效率保持在较高水平(30%负载之后)。

结语

液晶电视的高功耗给SMPS的设计造成很多困难。此外,各种不同规格的要求使设计难上加难。对于中小尺寸液晶电视而言,有源PFC预调节器、准谐振反激式转换器和固定频率反激式转换器的结合应用是非常经济有效的解决方案。在这个解决方案中,英飞凌提供的控制器IC、集成功率IC和CoolMOS可使设计变得轻而易举,同时具备出类拔萃的性能。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭