当前位置:首页 > 电源 > 功率器件
[导读]摘要:介绍了四象限变流器的工作原理,并在此基础上推导出四象限变流器的数学模型。通过四象限变流器双闭环直接电流控制的数学模型搭建了仿真框架,最后通过MATLAB/Simulink进行了仿真研究,结果表明基于双闭环直接电

摘要:介绍了四象限变流器的工作原理,并在此基础上推导出四象限变流器的数学模型。通过四象限变流器双闭环直接电流控制的数学模型搭建了仿真框架,最后通过MATLAB/Simulink进行了仿真研究,结果表明基于双闭环直接电流控制的四象限变流器具有很好的稳态和瞬态性能,网侧功率因数接近于1。 叙词:谐波污染 功率因数 直接电流控制 Abstract:The four-quadrant converter mathematical model is derived by its operation principle and working conditions and then the simulation is built according to its mathematical model. The simulation which is used by MATLAB/Simulink proved that double-loop direct current control is an effective way to achieve stable output DC voltage, suppress the harmonics effectively and achieve the net power factor close to 1. Keyword:Harmonic pollution, Power factor, Direct current control

1 引言

随着电力电子装置的广泛使用,由此引起的谐波污染问题逐渐受到了人们的重视。整流装置是谐波主要的来源,因此有必要研制高功率因数、低谐波整流器以消除谐波源。与传统的二极管不控整流、相控整流相比,四象限变流器具有功率因数高、直流侧电压稳定、输入电流谐波小、开关损耗小、电磁污染少等优点[3]。

四象限变流器的控制策略主要有间接电流控制和直接电流控制两种。间接电流控制通过调节变流器交流侧电压的幅值和相位达到控制输入电流的目的[1]。双闭环直接电流控制在间接电流控制的基础上引入网侧输入电流反馈,具有动态响应速度快、网侧输入电流谐波小和直流侧输出电压稳定等优点[1]。本文首先介绍了四象限变流器的工作原理和数学模型,比较了基于直接电流控制与间接电流控制的四象限变流器工作性能,在此基础上研究了直接电流控制四象限变流器的控制模型与PI参数设计。最后,通过仿真结果验证了本文提出的直接电流控制四象限变流器具备优良的稳态和瞬态工作性能。

2 工作原理

四象限变流器的主电路结构如图1所示。其中UN为输入电压;电感LN为网侧等效电感,起到传递能量、抑制高次谐波、平衡桥臂终端电压和电网电压的作用;RN为网侧电阻;T1~T4为全控型开关器件(如MOSFET、IGBT等);D1~D4为续流二极管;Cdc为滤波电容,为高次谐波电流提供低阻抗通路,减少直流电压纹波;C2、L2分别为二次滤波电容和电感;RL为负载电阻;Udc为直流侧输出电压。

图1 四象限变流器主电路

采用单极性调制的时候,变流器交流侧电压Uab将在Udc,0或0,-Udc之间切换。因此,单相四象限变流器主电路的数学模型为: 

(1)

 式中:S(t)整流器开关函数。

3 双闭环控制四象限变流器

3.1 直接电流控制与间接电流控制的比较

直接电流控制,是一种通过直接控制交流电流而使其跟踪给定电流信号的控制方法。控制器具有电流控制环,通过直接对电流调节,使电流快速地跟踪给定值,因此,直接电流控制四象限变换器具有很好的动态性能。另外对电流给定值限幅可以很好地限制输出电流幅值。

间接电流控制也称为相位幅值控制,它通过控制逆变器输入电压的幅值和相位来间接控制输入电流。这种控制方式的稳定性很差,系统动态响应慢,在暂态过程中交流电流可能会出现直流偏移问题和很大的电流过冲。所以尽管幅相位控制已提出了10多年时间,但在实际系统和装置中几乎不被采用。

3.2控制模型的建立

根据四象限变流器的控制原理,得到图2所示四象限变流器双闭环控制框图。 

图2 双闭环直接电流控制原理

图中U*d为中间直流侧输出电压给定值,Ud为中间直流环节输出电压,Id为中间直流环节输出电流。为了减轻直流环节中电压环PI调节器的负荷,改善PI调节器的动态响应,用直流环节电流Id计算给定电流的有效分量I*s2,其结果与I*s1相加后作为交流电流的给定值I*s。由图可得电流给定值I*s为: 

3.3双闭环直接电流控制PI参数的设计

3.3.1 电流内环的设计

电流内环使输入电流跟踪指令电流,能够提高系统的动态响应能力。考虑到参数准确性和漂移,以及实现电流控制无静差,本文选用PI调节器,控制框图如图3所示。

图3 电流内环控制器

考虑到电流内环需要获得较快电流跟踪性能,设计PI调节器的零点抵消电流控制对象传递函数的极点,即

3.3.2电压外环的设计

假设直流端的滤波电容足够大,则可忽略直流电压纹波扰动,电压外环控制器如图4所示。

图4 电压外环控制器

得到电压外环的开环传递函数为:

4 仿真结果分析

根据仿真模型,利用数学工具MATLAB/Simulink对本文提出的直接电流控制四象限变流器进行验证。参数设计如下:

交流侧:网侧交流电压Us=1500V,频率fs=50HZ,线路电阻RS=0.2Ω,线路电感Ls=1.19mH;直流侧: 输出电压指令Ud=3000V,电容Cd=0.01F,二次滤波环节C2=3mF,电感L2=0.84mH;电流内环PI参数为:Kip=4.55,Kli=210,电压外环PI参数为:Kvp=0.5,Kvi=291。

运用双闭环直接电流控制,启动过程的仿真结果如图5所示。从图中可以看出,双闭环直接电流控制启动电流波动比较小,动态响应速度快,在0.3s时加上负载后,输入电压和电流的功率因数为1,得到良好的效果。

图5 软启动到加上负载时的仿真波形: (a) 输入电压和输入电流波形; (b)输出电压波形。

增大负载后的仿真波形如图6所示。在负载切换的过程中,输出直流电压跌落30V,波动比较小,网侧输入电压和输入电流在经过1个工频周期后保持同相位,稳定后变流器功率因数接近于1。

 

 

图7 额定牵引负载到再生负载时的波形:(a) 输入电压和输入电流波形;(b) 输出电压波形

5 结语

本文分析了四象限变流器的工作原理,提出了四象限变流器的数学模型,建立了双闭环直接电流控制的仿真模型。通过仿真对四象限变流器系统的结构、系统的稳定性、系统的动静态响应以及系统的参数对系统的可靠性、稳定等性能的影响进行了研究。仿真结果表明,双闭环直接电流控制四象限变流器具有良好的动态响应和稳态特性。

参考文献

[1] 张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.

[2] 赵振波,许伯强,李和明.高功率因数PWM整流器综述.华北电力大学学报.2002年第29卷第4期:36~40

[3] 陈坚.电力电子学[M].北京:高等教育出版社,2002.

[4] 王兆安,黄俊.电力电子技术[M].第4版.北京:机械工业出版社,2003.

[5] 潘诗峰,赵剑锋,王洵.大功率交流电子负载的研究.电力电子技术.2006年第40卷第1期:97~10

作者简介

刘娟 ,女,生于1984年,西南交通大学硕士研究生,研究方向为电力电子。■

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭